Mostrar el registro sencillo del ítem
dc.contributor.author | Rubino, C. | es_ES |
dc.contributor.author | BONET-ARACIL, MARILÉS | es_ES |
dc.contributor.author | Gisbert Paya, Jaime | es_ES |
dc.contributor.author | Liuzzi, Stefania | es_ES |
dc.contributor.author | Stefanizzi, Pietro | es_ES |
dc.contributor.author | Zamorano Cantó, Manuel | es_ES |
dc.contributor.author | Martellotta, Francesco | es_ES |
dc.date.accessioned | 2020-06-06T03:32:49Z | |
dc.date.available | 2020-06-06T03:32:49Z | |
dc.date.issued | 2019-12-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145551 | |
dc.description.abstract | [EN] In recent years, the interest in reusing recycled fibers as building materials has been growing as a consequence of their ability to reduce the production of waste and the use of virgin resources, taking advantage of the potential that fibrous materials may offer to improve thermal and acoustic comfort. Composite panels, made of 100% wool waste fibers and bound by means of either a chitosan solution and a gum Arabic solution, were tested and characterized in terms of acoustic and non-acoustic properties. Samples with a 5 cm thickness and different density values were made to investigate the influence of flow resistivity on the final performance. Experimental results demonstrated that the samples had thermal conductivity ranging between 0.049 and 0.060 W/(m K), well comparable to conventional building materials. Similarly, acoustic results were very promising, showing absorption coefficients that, for the given thickness, were generally higher than 0.5 from 500 Hz on, and higher than 0.9 from 1 kHz on. Finally, the effects of the non-acoustic properties and of the air gap behind the samples on the acoustic behavior were also analyzed, proving that the agreement with absorption values predicted by empirical models was also very good. | es_ES |
dc.description.sponsorship | C.R. scholarship has been funded by the Italian Ministry of Education, University and Research (MIUR), within the National Research Program "PON Ricerca e Innovazione 2014-2020" (grant DOT1748713 N.5). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Materials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Textile waste | es_ES |
dc.subject | Biopolymers | es_ES |
dc.subject | Sound absorption | es_ES |
dc.subject | Sustainable materials | es_ES |
dc.subject | Circular economy | es_ES |
dc.subject.classification | INGENIERIA TEXTIL Y PAPELERA | es_ES |
dc.title | Composite Eco-Friendly Sound Absorbing Materials Made of Recycled Textile Waste and Biopolymers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ma12234020 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MIUR//DOT1748713 N.5/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera | es_ES |
dc.description.bibliographicCitation | Rubino, C.; Bonet-Aracil, M.; Gisbert Paya, J.; Liuzzi, S.; Stefanizzi, P.; Zamorano Cantó, M.; Martellotta, F. (2019). Composite Eco-Friendly Sound Absorbing Materials Made of Recycled Textile Waste and Biopolymers. Materials. 12(23):1-18. https://doi.org/10.3390/ma12234020 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ma12234020 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 23 | es_ES |
dc.identifier.eissn | 1996-1944 | es_ES |
dc.identifier.pmid | 31816936 | es_ES |
dc.identifier.pmcid | PMC6926769 | es_ES |
dc.relation.pasarela | S\398677 | es_ES |
dc.contributor.funder | Ministero dell'Istruzione dell'Università e della Ricerca, Italia | es_ES |
dc.description.references | Joshi, S. ., Drzal, L. ., Mohanty, A. ., & Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3), 371-376. doi:10.1016/j.compositesa.2003.09.016 | es_ES |
dc.description.references | Hesterberg, T. W., & Hart, G. A. (2001). Synthetic Vitreous Fibers: A Review of Toxicology Research and Its Impact on Hazard Classification. Critical Reviews in Toxicology, 31(1), 1-53. doi:10.1080/20014091111668 | es_ES |
dc.description.references | Bakatovich, A., Davydenko, N., & Gaspar, F. (2018). Thermal insulating plates produced on the basis of vegetable agricultural waste. Energy and Buildings, 180, 72-82. doi:10.1016/j.enbuild.2018.09.032 | es_ES |
dc.description.references | Martellotta, F., Cannavale, A., De Matteis, V., & Ayr, U. (2018). Sustainable sound absorbers obtained from olive pruning wastes and chitosan binder. Applied Acoustics, 141, 71-78. doi:10.1016/j.apacoust.2018.06.022 | es_ES |
dc.description.references | Kymäläinen, H.-R., & Sjöberg, A.-M. (2008). Flax and hemp fibres as raw materials for thermal insulations. Building and Environment, 43(7), 1261-1269. doi:10.1016/j.buildenv.2007.03.006 | es_ES |
dc.description.references | Zhou, X., Zheng, F., Li, H., & Lu, C. (2010). An environment-friendly thermal insulation material from cotton stalk fibers. Energy and Buildings, 42(7), 1070-1074. doi:10.1016/j.enbuild.2010.01.020 | es_ES |
dc.description.references | Ashour, T., Georg, H., & Wu, W. (2011). Performance of straw bale wall: A case of study. Energy and Buildings, 43(8), 1960-1967. doi:10.1016/j.enbuild.2011.04.001 | es_ES |
dc.description.references | Lim, Z. Y., Putra, A., Nor, M. J. M., & Yaakob, M. Y. (2018). Sound absorption performance of natural kenaf fibres. Applied Acoustics, 130, 107-114. doi:10.1016/j.apacoust.2017.09.012 | es_ES |
dc.description.references | Hosseini Fouladi, M., Ayub, M., & Jailani Mohd Nor, M. (2011). Analysis of coir fiber acoustical characteristics. Applied Acoustics, 72(1), 35-42. doi:10.1016/j.apacoust.2010.09.007 | es_ES |
dc.description.references | Wei, K., Lv, C., Chen, M., Zhou, X., Dai, Z., & Shen, D. (2015). Development and performance evaluation of a new thermal insulation material from rice straw using high frequency hot-pressing. Energy and Buildings, 87, 116-122. doi:10.1016/j.enbuild.2014.11.026 | es_ES |
dc.description.references | Berardi, U., & Iannace, G. (2015). Acoustic characterization of natural fibers for sound absorption applications. Building and Environment, 94, 840-852. doi:10.1016/j.buildenv.2015.05.029 | es_ES |
dc.description.references | Rubino, C., Liuzzi, S., Martellotta, F., & Stefanizzi, P. (2018). Textile wastes in building sector: A review. Modelling, Measurement and Control B, 87(3), 172-179. doi:10.18280/mmc_b.870309 | es_ES |
dc.description.references | Ricciardi, P., Belloni, E., & Cotana, F. (2014). Innovative panels with recycled materials: Thermal and acoustic performance and Life Cycle Assessment. Applied Energy, 134, 150-162. doi:10.1016/j.apenergy.2014.07.112 | es_ES |
dc.description.references | Barbero-Barrera, M. del M., Pombo, O., & Navacerrada, M. de los Á. (2016). Textile fibre waste bindered with natural hydraulic lime. Composites Part B: Engineering, 94, 26-33. doi:10.1016/j.compositesb.2016.03.013 | es_ES |
dc.description.references | Echeverria, C. A., Pahlevani, F., Handoko, W., Jiang, C., Doolan, C., & Sahajwalla, V. (2019). Engineered hybrid fibre reinforced composites for sound absorption building applications. Resources, Conservation and Recycling, 143, 1-14. doi:10.1016/j.resconrec.2018.12.014 | es_ES |
dc.description.references | Leal Filho, W., Ellams, D., Han, S., Tyler, D., Boiten, V. J., Paço, A., … Balogun, A.-L. (2019). A review of the socio-economic advantages of textile recycling. Journal of Cleaner Production, 218, 10-20. doi:10.1016/j.jclepro.2019.01.210 | es_ES |
dc.description.references | Muñoz, I., Rodríguez, C., Gillet, D., & M. Moerschbacher, B. (2017). Life cycle assessment of chitosan production in India and Europe. The International Journal of Life Cycle Assessment, 23(5), 1151-1160. doi:10.1007/s11367-017-1290-2 | es_ES |
dc.description.references | Mati-Baouche, N., De Baynast, H., Lebert, A., Sun, S., Lopez-Mingo, C. J. S., Leclaire, P., & Michaud, P. (2014). Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan. Industrial Crops and Products, 58, 244-250. doi:10.1016/j.indcrop.2014.04.022 | es_ES |
dc.description.references | El Hage, R., Khalaf, Y., Lacoste, C., Nakhl, M., Lacroix, P., & Bergeret, A. (2018). A flame retarded chitosan binder for insulating miscanthus/recycled textile fibers reinforced biocomposites. Journal of Applied Polymer Science, 136(13), 47306. doi:10.1002/app.47306 | es_ES |
dc.description.references | Mati-Baouche, N., de Baynast, H., Michaud, P., Dupont, T., & Leclaire, P. (2016). Sound absorption properties of a sunflower composite made from crushed stem particles and from chitosan bio-binder. Applied Acoustics, 111, 179-187. doi:10.1016/j.apacoust.2016.04.021 | es_ES |
dc.description.references | Abuarra, A., Hashim, R., Bauk, S., Kandaiya, S., & Tousi, E. T. (2014). Fabrication and characterization of gum Arabic bonded Rhizophora spp. particleboards. Materials & Design, 60, 108-115. doi:10.1016/j.matdes.2014.03.032 | es_ES |
dc.description.references | Elinwa, A. U., Abdulbasir, G., & Abdulkadir, G. (2018). Gum Arabic as an admixture for cement concrete production. Construction and Building Materials, 176, 201-212. doi:10.1016/j.conbuildmat.2018.04.160 | es_ES |
dc.description.references | Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9 | es_ES |
dc.description.references | Johnson, D. L., Koplik, J., & Dashen, R. (1987). Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics, 176(-1), 379. doi:10.1017/s0022112087000727 | es_ES |
dc.description.references | Allard, J., & Champoux, Y. (1992). New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America, 91(6), 3346-3353. doi:10.1121/1.402824 | es_ES |
dc.description.references | Patnaik, A., Mvubu, M., Muniyasamy, S., Botha, A., & Anandjiwala, R. D. (2015). Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy and Buildings, 92, 161-169. doi:10.1016/j.enbuild.2015.01.056 | es_ES |
dc.description.references | Brown, R. J. S. (1980). Connection between formation factor for electrical resistivity and fluid‐solid coupling factor in Biot’s equations for acoustic waves in fluid‐filled porous media. GEOPHYSICS, 45(8), 1269-1275. doi:10.1190/1.1441123 | es_ES |
dc.description.references | Pfretzschner, J., & Mª. Rodriguez, R. (1999). Acoustic properties of rubber crumbs. Polymer Testing, 18(2), 81-92. doi:10.1016/s0142-9418(98)00009-9 | es_ES |
dc.description.references | Berryman, J. G. (1980). Confirmation of Biot’s theory. Applied Physics Letters, 37(4), 382-384. doi:10.1063/1.91951 | es_ES |
dc.description.references | Ingard, K. U., & Dear, T. A. (1985). Measurement of acoustic flow resistance. Journal of Sound and Vibration, 103(4), 567-572. doi:10.1016/s0022-460x(85)80024-9 | es_ES |
dc.description.references | Rey, R. del, Alba, J., Arenas, J. P., & Ramis, J. (2013). Technical Notes: Evaluation of Two Alternative Procedures for Measuring Airflow Resistance of Sound Absorbing Materials. Archives of Acoustics, 38(4), 547-554. doi:10.2478/aoa-2013-0064 | es_ES |
dc.description.references | Jerman, M., & Černý, R. (2012). Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials. Energy and Buildings, 53, 39-46. doi:10.1016/j.enbuild.2012.07.002 | es_ES |
dc.description.references | Jerman, M., Palomar, I., Kočí, V., & Černý, R. (2019). Thermal and hygric properties of biomaterials suitable for interior thermal insulation systems in historical and traditional buildings. Building and Environment, 154, 81-88. doi:10.1016/j.buildenv.2019.03.020 | es_ES |
dc.description.references | Gustafsson, S. E. (1991). Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Review of Scientific Instruments, 62(3), 797-804. doi:10.1063/1.1142087 | es_ES |
dc.description.references | Del Rey, R., Berto, L., Alba, J., & Arenas, J. P. (2015). Acoustic characterization of recycled textile materials used as core elements in noise barriers. Noise Control Engineering Journal, 63(5), 439-447. doi:10.3397/1/376339 | es_ES |
dc.description.references | Piégay, C., Glé, P., Gourdon, E., Gourlay, E., & Marceau, S. (2018). Acoustical model of vegetal wools including two types of fibers. Applied Acoustics, 129, 36-46. doi:10.1016/j.apacoust.2017.06.021 | es_ES |
dc.description.references | Carosio, F., & Alongi, J. (2018). Flame Retardant Multilayered Coatings on Acrylic Fabrics Prepared by One-Step Deposition of Chitosan/Montmorillonite Complexes. Fibers, 6(2), 36. doi:10.3390/fib6020036 | es_ES |
dc.description.references | No, H. K., Meyers, S. P., Prinyawiwatkul, W., & Xu, Z. (2007). Applications of Chitosan for Improvement of Quality and Shelf Life of Foods: A Review. Journal of Food Science, 72(5), R87-R100. doi:10.1111/j.1750-3841.2007.00383.x | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |