- -

Bio-Polyethylene-Based Composites Reinforced with Alkali and Palmitoyl Chloride-Treated Coffee Silverskin

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Bio-Polyethylene-Based Composites Reinforced with Alkali and Palmitoyl Chloride-Treated Coffee Silverskin

Show full item record

Dominici, F.; Garcia-Garcia, D.; Fombuena, V.; Luzi, F.; Puglia, D.; Torre, L.; Balart, R. (2019). Bio-Polyethylene-Based Composites Reinforced with Alkali and Palmitoyl Chloride-Treated Coffee Silverskin. Molecules. 24(17):1-14. https://doi.org/10.3390/molecules24173113

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145750

Files in this item

Item Metadata

Title: Bio-Polyethylene-Based Composites Reinforced with Alkali and Palmitoyl Chloride-Treated Coffee Silverskin
Author: Dominici, Franco Garcia-Garcia, Daniel Fombuena, Vicent Luzi, Francesca Puglia, Debora Torre, Luigi Balart, Rafael
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Issued date:
Abstract:
[EN] This work investigates the feasibility of using coffee silverskin (CSS) as a reinforcing agent in biobased polyethylene (BioPE) composites, by adding it in bulk and thin film samples. The effect of two different ...[+]
Subjects: Coffee silverskin , Biopolyethelene , Alkali , Palmitoyl chloride , Composites
Copyrigths: Reconocimiento (by)
Source:
Molecules. (issn: 1420-3049 )
DOI: 10.3390/molecules24173113
Publisher:
MDPI AG
Publisher version: https:doi.org/10.3390/molecules24173113
Project ID:
info:eu-repo/grantAgreement/UPV//PAID-10-18/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
Thanks:
This research was partially funded by the Ministry of Science, Innovation, and Universities (MICIU) project number MAT2017-84909-C2-2-R. D.G.G. wants to thank the Universitat Politècnica de València for financial support ...[+]
Type: Artículo

References

Carbonell-Verdú, A., García-García, D., Jordá, A., Samper, M. D., & Balart, R. (2015). Development of slate fiber reinforced high density polyethylene composites for injection molding. Composites Part B: Engineering, 69, 460-466. doi:10.1016/j.compositesb.2014.10.026

Zhang, H. (2014). Effect of a novel coupling agent, alkyl ketene dimer, on the mechanical properties of wood–plastic composites. Materials & Design, 59, 130-134. doi:10.1016/j.matdes.2014.02.048

Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940 [+]
Carbonell-Verdú, A., García-García, D., Jordá, A., Samper, M. D., & Balart, R. (2015). Development of slate fiber reinforced high density polyethylene composites for injection molding. Composites Part B: Engineering, 69, 460-466. doi:10.1016/j.compositesb.2014.10.026

Zhang, H. (2014). Effect of a novel coupling agent, alkyl ketene dimer, on the mechanical properties of wood–plastic composites. Materials & Design, 59, 130-134. doi:10.1016/j.matdes.2014.02.048

Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940

Das, O., Sarmah, A. K., & Bhattacharyya, D. (2015). A sustainable and resilient approach through biochar addition in wood polymer composites. Science of The Total Environment, 512-513, 326-336. doi:10.1016/j.scitotenv.2015.01.063

Saba, N., Paridah, M. T., & Jawaid, M. (2015). Mechanical properties of kenaf fibre reinforced polymer composite: A review. Construction and Building Materials, 76, 87-96. doi:10.1016/j.conbuildmat.2014.11.043

Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017

Chan, C. M., Vandi, L.-J., Pratt, S., Halley, P., Richardson, D., Werker, A., & Laycock, B. (2018). Mechanical properties of poly(3-hydroxybutyrate-co -3-hydroxyvalerate)/wood flour composites: Effect of interface modifiers. Journal of Applied Polymer Science, 135(43), 46828. doi:10.1002/app.46828

Gao, H., Xie, Y., Ou, R., & Wang, Q. (2012). Grafting effects of polypropylene/polyethylene blends with maleic anhydride on the properties of the resulting wood–plastic composites. Composites Part A: Applied Science and Manufacturing, 43(1), 150-157. doi:10.1016/j.compositesa.2011.10.001

Lv, S., Gu, J., Tan, H., & Zhang, Y. (2015). Modification of wood flour/PLA composites by reactive extrusion with maleic anhydride. Journal of Applied Polymer Science, 133(15), n/a-n/a. doi:10.1002/app.43295

Zhang, J.-F., & Sun, X. (2004). Mechanical Properties of Poly(lactic acid)/Starch Composites Compatibilized by Maleic Anhydride. Biomacromolecules, 5(4), 1446-1451. doi:10.1021/bm0400022

Wu, C.-S. (2003). Physical properties and biodegradability of maleated-polycaprolactone/starch composite. Polymer Degradation and Stability, 80(1), 127-134. doi:10.1016/s0141-3910(02)00393-2

Sobczak, L., Brüggemann, O., & Putz, R. F. (2012). Polyolefin composites with natural fibers and wood-modification of the fiber/filler-matrix interaction. Journal of Applied Polymer Science, 127(1), 1-17. doi:10.1002/app.36935

Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883-2892. doi:10.1016/j.compositesb.2012.04.053

García-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., & Balart, R. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 78, 256-265. doi:10.1016/j.compositesb.2015.03.080

Corrales, F., Vilaseca, F., Llop, M., Gironès, J., Méndez, J. A., & Mutjè, P. (2007). Chemical modification of jute fibers for the production of green-composites. Journal of Hazardous Materials, 144(3), 730-735. doi:10.1016/j.jhazmat.2007.01.103

Hyvärinen, M., & Kärki, T. (2015). The Effects of the Substitution of Wood Fiberwith Agro-based Fiber (Barley Straw) on the Properties of Natural Fiber/Polypropylene Composites. MATEC Web of Conferences, 30, 01014. doi:10.1051/matecconf/20153001014

Murthy, P. S., & Naidu, M. M. (2010). Production and Application of Xylanase from Penicillium sp. Utilizing Coffee By-products. Food and Bioprocess Technology, 5(2), 657-664. doi:10.1007/s11947-010-0331-7

Ballesteros, L. F., Teixeira, J. A., & Mussatto, S. I. (2014). Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food and Bioprocess Technology, 7(12), 3493-3503. doi:10.1007/s11947-014-1349-z

Janissen, B., & Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling, 128, 110-117. doi:10.1016/j.resconrec.2017.10.001

Martinez-Saez, N., Ullate, M., Martin-Cabrejas, M. A., Martorell, P., Genovés, S., Ramon, D., & del Castillo, M. D. (2014). A novel antioxidant beverage for body weight control based on coffee silverskin. Food Chemistry, 150, 227-234. doi:10.1016/j.foodchem.2013.10.100

Garcia-Serna, E., Martinez-Saez, N., Mesias, M., Morales, F., & Castillo, M. (2014). Use of Coffee Silverskin and Stevia to Improve the Formulation of Biscuits. Polish Journal of Food and Nutrition Sciences, 64(4), 243-251. doi:10.2478/pjfns-2013-0024

Ateş, G., & Elmacı, Y. (2018). Coffee silverskin as fat replacer in cake formulations and its effect on physical, chemical and sensory attributes of cakes. LWT, 90, 519-525. doi:10.1016/j.lwt.2018.01.003

Rodrigues, F., Matias, R., Ferreira, M., Amaral, M. H., & Oliveira, M. B. P. P. (2016). In vitroandin vivocomparative study of cosmetic ingredients Coffee silverskin and hyaluronic acid. Experimental Dermatology, 25(7), 572-574. doi:10.1111/exd.13010

Rodrigues, F., Palmeira-de-Oliveira, A., das Neves, J., Sarmento, B., Amaral, M. H., & Oliveira, M. B. P. P. (2014). Coffee silverskin: A possible valuable cosmetic ingredient. Pharmaceutical Biology, 53(3), 386-394. doi:10.3109/13880209.2014.922589

Fernandez-Gomez, B., Ramos, S., Goya, L., Mesa, M. D., del Castillo, M. D., & Martín, M. Á. (2016). Coffee silverskin extract improves glucose-stimulated insulin secretion and protects against streptozotocin-induced damage in pancreatic INS-1E beta cells. Food Research International, 89, 1015-1022. doi:10.1016/j.foodres.2016.03.006

Bessada, S. M. F., Alves, R. C., Costa, A. S. G., Nunes, M. A., & Oliveira, M. B. P. P. (2018). Coffea canephora silverskin from different geographical origins: A comparative study. Science of The Total Environment, 645, 1021-1028. doi:10.1016/j.scitotenv.2018.07.201

Sarasini, F., Tirillò, J., Zuorro, A., Maffei, G., Lavecchia, R., Puglia, D., … Torre, L. (2018). Recycling coffee silverskin in sustainable composites based on a poly(butylene adipate-co-terephthalate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix. Industrial Crops and Products, 118, 311-320. doi:10.1016/j.indcrop.2018.03.070

Sarasini, F., Luzi, F., Dominici, F., Maffei, G., Iannone, A., Zuorro, A., … Puglia, D. (2018). Effect of Different Compatibilizers on Sustainable Composites Based on a PHBV/PBAT Matrix Filled with Coffee Silverskin. Polymers, 10(11), 1256. doi:10.3390/polym10111256

Zarrinbakhsh, N., Wang, T., Rodriguez-Uribe, A., Misra, M., & Mohanty, A. K. (2016). Characterization of Wastes and Coproducts from the Coffee Industry for Composite Material Production. BioResources, 11(3). doi:10.15376/biores.11.3.7637-7653

Lu, N., Swan, R. H., & Ferguson, I. (2011). Composition, structure, and mechanical properties of hemp fiber reinforced composite with recycled high-density polyethylene matrix. Journal of Composite Materials, 46(16), 1915-1924. doi:10.1177/0021998311427778

Prakash, G. K., & Mahadevan, K. M. (2008). Enhancing the properties of wood through chemical modification with palmitoyl chloride. Applied Surface Science, 254(6), 1751-1756. doi:10.1016/j.apsusc.2007.07.137

David, G., Gontard, N., Guerin, D., Heux, L., Lecomte, J., Molina-Boisseau, S., & Angellier-Coussy, H. (2019). Exploring the potential of gas-phase esterification to hydrophobize the surface of micrometric cellulose particles. European Polymer Journal, 115, 138-146. doi:10.1016/j.eurpolymj.2019.03.002

Figen, A. K., İsmail, O., & Pişkin, S. (2011). Devolatilization non-isothermal kinetic analysis of agricultural stalks and application of TG-FT/IR analysis. Journal of Thermal Analysis and Calorimetry, 107(3), 1177-1189. doi:10.1007/s10973-011-1959-x

Albano, C., González, J., Ichazo, M., & Kaiser, D. (1999). Thermal stability of blends of polyolefins and sisal fiber. Polymer Degradation and Stability, 66(2), 179-190. doi:10.1016/s0141-3910(99)00064-6

Varhegyi, G., Jakab, E., Till, F., & Szekely, T. (1989). Thermogravimetric-mass spectrometric characterization of the thermal decomposition of sunflower stem. Energy & Fuels, 3(6), 755-760. doi:10.1021/ef00018a017

Jandura, P., Riedl, B., & Kokta, B. V. (2000). Thermal degradation behavior of cellulose fibers partially esterified with some long chain organic acids. Polymer Degradation and Stability, 70(3), 387-394. doi:10.1016/s0141-3910(00)00132-4

Wang, Y., Wang, X., Heim, L.-O., Breitzke, H., Buntkowsky, G., & Zhang, K. (2014). Superhydrophobic surfaces from surface-hydrophobized cellulose fibers with stearoyl groups. Cellulose, 22(1), 289-299. doi:10.1007/s10570-014-0505-y

Mastrocola, D., Munari, M., Cioroi, M., & Lerici, C. R. (2000). Interaction between Maillard reaction products and lipid oxidation in starch-based model systems. Journal of the Science of Food and Agriculture, 80(6), 684-690. doi:10.1002/(sici)1097-0010(20000501)80:6<684::aid-jsfa589>3.0.co;2-3

Pasquini, D., Teixeira, E. de M., Curvelo, A. A. da S., Belgacem, M. N., & Dufresne, A. (2008). Surface esterification of cellulose fibres: Processing and characterisation of low-density polyethylene/cellulose fibres composites. Composites Science and Technology, 68(1), 193-201. doi:10.1016/j.compscitech.2007.05.009

Kim, H.-S., Lee, B.-H., Choi, S.-W., Kim, S., & Kim, H.-J. (2007). The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Composites Part A: Applied Science and Manufacturing, 38(6), 1473-1482. doi:10.1016/j.compositesa.2007.01.004

Yao, N., Zhang, P., Song, L., Kang, M., Lu, Z., & Zheng, R. (2013). Stearic acid coating on circulating fluidized bed combustion fly ashes and its effect on the mechanical performance of polymer composites. Applied Surface Science, 279, 109-115. doi:10.1016/j.apsusc.2013.04.045

Moustafa, H., Guizani, C., Dupont, C., Martin, V., Jeguirim, M., & Dufresne, A. (2017). Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications. ACS Sustainable Chemistry & Engineering, 5(2), 1906-1916. doi:10.1021/acssuschemeng.6b02633

Daramola, O. O., Akinwekomi, A. D., Adediran, A. A., Akindote-White, O., & Sadiku, E. R. (2019). Mechanical performance and water uptake behaviour of treated bamboo fibre-reinforced high-density polyethylene composites. Heliyon, 5(7), e02028. doi:10.1016/j.heliyon.2019.e02028

Srivastava, P., & Sinha, S. (2018). Effect of alkali treatment on hair fiber as reinforcement of HDPE composites: mechanical properties and water absorption behavior. Science and Engineering of Composite Materials, 25(3), 571-578. doi:10.1515/secm-2016-0198

Hoque, M. B., Solaiman, Alam, A. B. M. H., Mahmud, H., & Nobi, A. (2018). Mechanical, Degradation and Water Uptake Properties of Fabric Reinforced Polypropylene Based Composites: Effect of Alkali on Composites. Fibers, 6(4), 94. doi:10.3390/fib6040094

Ruijun Gu, Kokta, B. V., Michalkova, D., Dimzoski, B., Fortelny, I., Slouf, M., & Krulis, Z. (2010). Characteristics of wood-plastic composites reinforced with organo-nanoclays. Journal of Reinforced Plastics and Composites, 29(24), 3566-3586. doi:10.1177/0731684410378543

Garcia-Garcia, D., Quiles-Carrillo, L., Montanes, N., Fombuena, V., & Balart, R. (2017). Manufacturing and Characterization of Composite Fibreboards with Posidonia oceanica Wastes with an Environmentally-Friendly Binder from Epoxy Resin. Materials, 11(1), 35. doi:10.3390/ma11010035

Zini, E., Scandola, M., & Gatenholm, P. (2003). Heterogeneous Acylation of Flax Fibers. Reaction Kinetics and Surface Properties. Biomacromolecules, 4(3), 821-827. doi:10.1021/bm034040h

Samper-Madrigal, M. D., Fenollar, O., Dominici, F., Balart, R., & Kenny, J. M. (2014). The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 50(2), 863-872. doi:10.1007/s10853-014-8647-8

Wunderlich, B., & Cormier, C. M. (1967). Heat of fusion of polyethylene. Journal of Polymer Science Part A-2: Polymer Physics, 5(5), 987-988. doi:10.1002/pol.1967.160050514

Lindsey, D. T., & Wee, A. G. (2007). Perceptibility and acceptability of CIELAB color differences in computer-simulated teeth. Journal of Dentistry, 35(7), 593-599. doi:10.1016/j.jdent.2007.03.006

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record