Mostrar el registro sencillo del ítem
dc.contributor.author | Dominici, Franco | es_ES |
dc.contributor.author | Garcia-Garcia, Daniel | es_ES |
dc.contributor.author | Fombuena, Vicent | es_ES |
dc.contributor.author | Luzi, Francesca | es_ES |
dc.contributor.author | Puglia, Debora | es_ES |
dc.contributor.author | Torre, Luigi | es_ES |
dc.contributor.author | Balart, Rafael | es_ES |
dc.date.accessioned | 2020-06-09T03:32:19Z | |
dc.date.available | 2020-06-09T03:32:19Z | |
dc.date.issued | 2019-08-27 | es_ES |
dc.identifier.issn | 1420-3049 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145750 | |
dc.description.abstract | [EN] This work investigates the feasibility of using coffee silverskin (CSS) as a reinforcing agent in biobased polyethylene (BioPE) composites, by adding it in bulk and thin film samples. The effect of two different treatments, alkali bleaching (CSS_A) and esterification with palmitoyl chloride (CSS_P), on mechanical, thermal, morphological and water absorption behavior of produced materials at different CSS loading (10, 20 and 30 wt %) was investigated. A reactive graft copolymerization of BioPE with maleic anhydride was considered in the case of alkali treated CSS. It was found that, when introduced in bulk samples, improvement in the elastic modulus and a reduction in strain at maximum stress were observed with the increase in CSS fraction for the untreated and treated CSS composites, while the low aspect ratio of the CSS particles and their poor adhesion with the polymeric matrix were responsible for reduced ductility in films, decreasing crystallinity values and reduction of elastic moduli. When CSS_A and CSS_P are introduced in the matrix, a substantial reduction in the water uptake is also obtained in films, mainly due to presence of maleated PE, that builds up some interactions to eliminate the amounts of OH groups and hydrophobized CSS, due to the weakened absorption capacity of the functionalized CSS. | es_ES |
dc.description.sponsorship | This research was partially funded by the Ministry of Science, Innovation, and Universities (MICIU) project number MAT2017-84909-C2-2-R. D.G.G. wants to thank the Universitat Politècnica de València for financial support through a postdoctoral contract [PAID-10-18]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Molecules | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Coffee silverskin | es_ES |
dc.subject | Biopolyethelene | es_ES |
dc.subject | Alkali | es_ES |
dc.subject | Palmitoyl chloride | es_ES |
dc.subject | Composites | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Bio-Polyethylene-Based Composites Reinforced with Alkali and Palmitoyl Chloride-Treated Coffee Silverskin | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/molecules24173113 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-10-18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Dominici, F.; Garcia-Garcia, D.; Fombuena, V.; Luzi, F.; Puglia, D.; Torre, L.; Balart, R. (2019). Bio-Polyethylene-Based Composites Reinforced with Alkali and Palmitoyl Chloride-Treated Coffee Silverskin. Molecules. 24(17):1-14. https://doi.org/10.3390/molecules24173113 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https:doi.org/10.3390/molecules24173113 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 17 | es_ES |
dc.identifier.pmid | 31461962 | es_ES |
dc.identifier.pmcid | PMC6749558 | es_ES |
dc.relation.pasarela | S\392405 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Carbonell-Verdú, A., García-García, D., Jordá, A., Samper, M. D., & Balart, R. (2015). Development of slate fiber reinforced high density polyethylene composites for injection molding. Composites Part B: Engineering, 69, 460-466. doi:10.1016/j.compositesb.2014.10.026 | es_ES |
dc.description.references | Zhang, H. (2014). Effect of a novel coupling agent, alkyl ketene dimer, on the mechanical properties of wood–plastic composites. Materials & Design, 59, 130-134. doi:10.1016/j.matdes.2014.02.048 | es_ES |
dc.description.references | Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940 | es_ES |
dc.description.references | Das, O., Sarmah, A. K., & Bhattacharyya, D. (2015). A sustainable and resilient approach through biochar addition in wood polymer composites. Science of The Total Environment, 512-513, 326-336. doi:10.1016/j.scitotenv.2015.01.063 | es_ES |
dc.description.references | Saba, N., Paridah, M. T., & Jawaid, M. (2015). Mechanical properties of kenaf fibre reinforced polymer composite: A review. Construction and Building Materials, 76, 87-96. doi:10.1016/j.conbuildmat.2014.11.043 | es_ES |
dc.description.references | Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017 | es_ES |
dc.description.references | Chan, C. M., Vandi, L.-J., Pratt, S., Halley, P., Richardson, D., Werker, A., & Laycock, B. (2018). Mechanical properties of poly(3-hydroxybutyrate-co -3-hydroxyvalerate)/wood flour composites: Effect of interface modifiers. Journal of Applied Polymer Science, 135(43), 46828. doi:10.1002/app.46828 | es_ES |
dc.description.references | Gao, H., Xie, Y., Ou, R., & Wang, Q. (2012). Grafting effects of polypropylene/polyethylene blends with maleic anhydride on the properties of the resulting wood–plastic composites. Composites Part A: Applied Science and Manufacturing, 43(1), 150-157. doi:10.1016/j.compositesa.2011.10.001 | es_ES |
dc.description.references | Lv, S., Gu, J., Tan, H., & Zhang, Y. (2015). Modification of wood flour/PLA composites by reactive extrusion with maleic anhydride. Journal of Applied Polymer Science, 133(15), n/a-n/a. doi:10.1002/app.43295 | es_ES |
dc.description.references | Zhang, J.-F., & Sun, X. (2004). Mechanical Properties of Poly(lactic acid)/Starch Composites Compatibilized by Maleic Anhydride. Biomacromolecules, 5(4), 1446-1451. doi:10.1021/bm0400022 | es_ES |
dc.description.references | Wu, C.-S. (2003). Physical properties and biodegradability of maleated-polycaprolactone/starch composite. Polymer Degradation and Stability, 80(1), 127-134. doi:10.1016/s0141-3910(02)00393-2 | es_ES |
dc.description.references | Sobczak, L., Brüggemann, O., & Putz, R. F. (2012). Polyolefin composites with natural fibers and wood-modification of the fiber/filler-matrix interaction. Journal of Applied Polymer Science, 127(1), 1-17. doi:10.1002/app.36935 | es_ES |
dc.description.references | Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883-2892. doi:10.1016/j.compositesb.2012.04.053 | es_ES |
dc.description.references | García-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., & Balart, R. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 78, 256-265. doi:10.1016/j.compositesb.2015.03.080 | es_ES |
dc.description.references | Corrales, F., Vilaseca, F., Llop, M., Gironès, J., Méndez, J. A., & Mutjè, P. (2007). Chemical modification of jute fibers for the production of green-composites. Journal of Hazardous Materials, 144(3), 730-735. doi:10.1016/j.jhazmat.2007.01.103 | es_ES |
dc.description.references | Hyvärinen, M., & Kärki, T. (2015). The Effects of the Substitution of Wood Fiberwith Agro-based Fiber (Barley Straw) on the Properties of Natural Fiber/Polypropylene Composites. MATEC Web of Conferences, 30, 01014. doi:10.1051/matecconf/20153001014 | es_ES |
dc.description.references | Murthy, P. S., & Naidu, M. M. (2010). Production and Application of Xylanase from Penicillium sp. Utilizing Coffee By-products. Food and Bioprocess Technology, 5(2), 657-664. doi:10.1007/s11947-010-0331-7 | es_ES |
dc.description.references | Ballesteros, L. F., Teixeira, J. A., & Mussatto, S. I. (2014). Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food and Bioprocess Technology, 7(12), 3493-3503. doi:10.1007/s11947-014-1349-z | es_ES |
dc.description.references | Janissen, B., & Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling, 128, 110-117. doi:10.1016/j.resconrec.2017.10.001 | es_ES |
dc.description.references | Martinez-Saez, N., Ullate, M., Martin-Cabrejas, M. A., Martorell, P., Genovés, S., Ramon, D., & del Castillo, M. D. (2014). A novel antioxidant beverage for body weight control based on coffee silverskin. Food Chemistry, 150, 227-234. doi:10.1016/j.foodchem.2013.10.100 | es_ES |
dc.description.references | Garcia-Serna, E., Martinez-Saez, N., Mesias, M., Morales, F., & Castillo, M. (2014). Use of Coffee Silverskin and Stevia to Improve the Formulation of Biscuits. Polish Journal of Food and Nutrition Sciences, 64(4), 243-251. doi:10.2478/pjfns-2013-0024 | es_ES |
dc.description.references | Ateş, G., & Elmacı, Y. (2018). Coffee silverskin as fat replacer in cake formulations and its effect on physical, chemical and sensory attributes of cakes. LWT, 90, 519-525. doi:10.1016/j.lwt.2018.01.003 | es_ES |
dc.description.references | Rodrigues, F., Matias, R., Ferreira, M., Amaral, M. H., & Oliveira, M. B. P. P. (2016). In vitroandin vivocomparative study of cosmetic ingredients Coffee silverskin and hyaluronic acid. Experimental Dermatology, 25(7), 572-574. doi:10.1111/exd.13010 | es_ES |
dc.description.references | Rodrigues, F., Palmeira-de-Oliveira, A., das Neves, J., Sarmento, B., Amaral, M. H., & Oliveira, M. B. P. P. (2014). Coffee silverskin: A possible valuable cosmetic ingredient. Pharmaceutical Biology, 53(3), 386-394. doi:10.3109/13880209.2014.922589 | es_ES |
dc.description.references | Fernandez-Gomez, B., Ramos, S., Goya, L., Mesa, M. D., del Castillo, M. D., & Martín, M. Á. (2016). Coffee silverskin extract improves glucose-stimulated insulin secretion and protects against streptozotocin-induced damage in pancreatic INS-1E beta cells. Food Research International, 89, 1015-1022. doi:10.1016/j.foodres.2016.03.006 | es_ES |
dc.description.references | Bessada, S. M. F., Alves, R. C., Costa, A. S. G., Nunes, M. A., & Oliveira, M. B. P. P. (2018). Coffea canephora silverskin from different geographical origins: A comparative study. Science of The Total Environment, 645, 1021-1028. doi:10.1016/j.scitotenv.2018.07.201 | es_ES |
dc.description.references | Sarasini, F., Tirillò, J., Zuorro, A., Maffei, G., Lavecchia, R., Puglia, D., … Torre, L. (2018). Recycling coffee silverskin in sustainable composites based on a poly(butylene adipate-co-terephthalate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix. Industrial Crops and Products, 118, 311-320. doi:10.1016/j.indcrop.2018.03.070 | es_ES |
dc.description.references | Sarasini, F., Luzi, F., Dominici, F., Maffei, G., Iannone, A., Zuorro, A., … Puglia, D. (2018). Effect of Different Compatibilizers on Sustainable Composites Based on a PHBV/PBAT Matrix Filled with Coffee Silverskin. Polymers, 10(11), 1256. doi:10.3390/polym10111256 | es_ES |
dc.description.references | Zarrinbakhsh, N., Wang, T., Rodriguez-Uribe, A., Misra, M., & Mohanty, A. K. (2016). Characterization of Wastes and Coproducts from the Coffee Industry for Composite Material Production. BioResources, 11(3). doi:10.15376/biores.11.3.7637-7653 | es_ES |
dc.description.references | Lu, N., Swan, R. H., & Ferguson, I. (2011). Composition, structure, and mechanical properties of hemp fiber reinforced composite with recycled high-density polyethylene matrix. Journal of Composite Materials, 46(16), 1915-1924. doi:10.1177/0021998311427778 | es_ES |
dc.description.references | Prakash, G. K., & Mahadevan, K. M. (2008). Enhancing the properties of wood through chemical modification with palmitoyl chloride. Applied Surface Science, 254(6), 1751-1756. doi:10.1016/j.apsusc.2007.07.137 | es_ES |
dc.description.references | David, G., Gontard, N., Guerin, D., Heux, L., Lecomte, J., Molina-Boisseau, S., & Angellier-Coussy, H. (2019). Exploring the potential of gas-phase esterification to hydrophobize the surface of micrometric cellulose particles. European Polymer Journal, 115, 138-146. doi:10.1016/j.eurpolymj.2019.03.002 | es_ES |
dc.description.references | Figen, A. K., İsmail, O., & Pişkin, S. (2011). Devolatilization non-isothermal kinetic analysis of agricultural stalks and application of TG-FT/IR analysis. Journal of Thermal Analysis and Calorimetry, 107(3), 1177-1189. doi:10.1007/s10973-011-1959-x | es_ES |
dc.description.references | Albano, C., González, J., Ichazo, M., & Kaiser, D. (1999). Thermal stability of blends of polyolefins and sisal fiber. Polymer Degradation and Stability, 66(2), 179-190. doi:10.1016/s0141-3910(99)00064-6 | es_ES |
dc.description.references | Varhegyi, G., Jakab, E., Till, F., & Szekely, T. (1989). Thermogravimetric-mass spectrometric characterization of the thermal decomposition of sunflower stem. Energy & Fuels, 3(6), 755-760. doi:10.1021/ef00018a017 | es_ES |
dc.description.references | Jandura, P., Riedl, B., & Kokta, B. V. (2000). Thermal degradation behavior of cellulose fibers partially esterified with some long chain organic acids. Polymer Degradation and Stability, 70(3), 387-394. doi:10.1016/s0141-3910(00)00132-4 | es_ES |
dc.description.references | Wang, Y., Wang, X., Heim, L.-O., Breitzke, H., Buntkowsky, G., & Zhang, K. (2014). Superhydrophobic surfaces from surface-hydrophobized cellulose fibers with stearoyl groups. Cellulose, 22(1), 289-299. doi:10.1007/s10570-014-0505-y | es_ES |
dc.description.references | Mastrocola, D., Munari, M., Cioroi, M., & Lerici, C. R. (2000). Interaction between Maillard reaction products and lipid oxidation in starch-based model systems. Journal of the Science of Food and Agriculture, 80(6), 684-690. doi:10.1002/(sici)1097-0010(20000501)80:6<684::aid-jsfa589>3.0.co;2-3 | es_ES |
dc.description.references | Pasquini, D., Teixeira, E. de M., Curvelo, A. A. da S., Belgacem, M. N., & Dufresne, A. (2008). Surface esterification of cellulose fibres: Processing and characterisation of low-density polyethylene/cellulose fibres composites. Composites Science and Technology, 68(1), 193-201. doi:10.1016/j.compscitech.2007.05.009 | es_ES |
dc.description.references | Kim, H.-S., Lee, B.-H., Choi, S.-W., Kim, S., & Kim, H.-J. (2007). The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Composites Part A: Applied Science and Manufacturing, 38(6), 1473-1482. doi:10.1016/j.compositesa.2007.01.004 | es_ES |
dc.description.references | Yao, N., Zhang, P., Song, L., Kang, M., Lu, Z., & Zheng, R. (2013). Stearic acid coating on circulating fluidized bed combustion fly ashes and its effect on the mechanical performance of polymer composites. Applied Surface Science, 279, 109-115. doi:10.1016/j.apsusc.2013.04.045 | es_ES |
dc.description.references | Moustafa, H., Guizani, C., Dupont, C., Martin, V., Jeguirim, M., & Dufresne, A. (2017). Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications. ACS Sustainable Chemistry & Engineering, 5(2), 1906-1916. doi:10.1021/acssuschemeng.6b02633 | es_ES |
dc.description.references | Daramola, O. O., Akinwekomi, A. D., Adediran, A. A., Akindote-White, O., & Sadiku, E. R. (2019). Mechanical performance and water uptake behaviour of treated bamboo fibre-reinforced high-density polyethylene composites. Heliyon, 5(7), e02028. doi:10.1016/j.heliyon.2019.e02028 | es_ES |
dc.description.references | Srivastava, P., & Sinha, S. (2018). Effect of alkali treatment on hair fiber as reinforcement of HDPE composites: mechanical properties and water absorption behavior. Science and Engineering of Composite Materials, 25(3), 571-578. doi:10.1515/secm-2016-0198 | es_ES |
dc.description.references | Hoque, M. B., Solaiman, Alam, A. B. M. H., Mahmud, H., & Nobi, A. (2018). Mechanical, Degradation and Water Uptake Properties of Fabric Reinforced Polypropylene Based Composites: Effect of Alkali on Composites. Fibers, 6(4), 94. doi:10.3390/fib6040094 | es_ES |
dc.description.references | Ruijun Gu, Kokta, B. V., Michalkova, D., Dimzoski, B., Fortelny, I., Slouf, M., & Krulis, Z. (2010). Characteristics of wood-plastic composites reinforced with organo-nanoclays. Journal of Reinforced Plastics and Composites, 29(24), 3566-3586. doi:10.1177/0731684410378543 | es_ES |
dc.description.references | Garcia-Garcia, D., Quiles-Carrillo, L., Montanes, N., Fombuena, V., & Balart, R. (2017). Manufacturing and Characterization of Composite Fibreboards with Posidonia oceanica Wastes with an Environmentally-Friendly Binder from Epoxy Resin. Materials, 11(1), 35. doi:10.3390/ma11010035 | es_ES |
dc.description.references | Zini, E., Scandola, M., & Gatenholm, P. (2003). Heterogeneous Acylation of Flax Fibers. Reaction Kinetics and Surface Properties. Biomacromolecules, 4(3), 821-827. doi:10.1021/bm034040h | es_ES |
dc.description.references | Samper-Madrigal, M. D., Fenollar, O., Dominici, F., Balart, R., & Kenny, J. M. (2014). The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 50(2), 863-872. doi:10.1007/s10853-014-8647-8 | es_ES |
dc.description.references | Wunderlich, B., & Cormier, C. M. (1967). Heat of fusion of polyethylene. Journal of Polymer Science Part A-2: Polymer Physics, 5(5), 987-988. doi:10.1002/pol.1967.160050514 | es_ES |
dc.description.references | Lindsey, D. T., & Wee, A. G. (2007). Perceptibility and acceptability of CIELAB color differences in computer-simulated teeth. Journal of Dentistry, 35(7), 593-599. doi:10.1016/j.jdent.2007.03.006 | es_ES |