- -

Effect of Reynolds number on TiO2 nanosponges doped with Li+ cations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of Reynolds number on TiO2 nanosponges doped with Li+ cations

Mostrar el registro completo del ítem

Blasco-Tamarit, E.; Muñoz-Portero, M.; Sánchez Tovar, R.; Fernández Domene, RM.; Garcia-Anton, J. (2018). Effect of Reynolds number on TiO2 nanosponges doped with Li+ cations. New Journal of Chemistry. 42(13):11054-11063. https://doi.org/10.1039/c8nj00800k

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145856

Ficheros en el ítem

Metadatos del ítem

Título: Effect of Reynolds number on TiO2 nanosponges doped with Li+ cations
Autor: Blasco-Tamarit, E. Muñoz-Portero, María-José Sánchez Tovar, Rita Fernández Domene, Ramón Manuel Garcia-Anton, Jose
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] Anatase TiO2 nanosponges have been synthesized by anodization of Ti, and Li+ cations have been inserted in these nanostructures. The influence of hydrodynamic conditions (Reynolds number, Re = 0 to Re = 600) during ...[+]
Palabras clave: TiO2 , Nanosponges , Li-doped
Derechos de uso: Reserva de todos los derechos
Fuente:
New Journal of Chemistry. (issn: 1144-0546 )
DOI: 10.1039/c8nj00800k
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c8nj00800k
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//UPOV08-3E-001/ES/Utilización de Desktop Microscopy System (DMS) en el campo de los materiales/
info:eu-repo/grantAgreement/MINECO//CTQ2016-79203-R/ES/MODIFICACION DE FOTOCATALIZADORES DE OXIDOS METALICOS NANOESTRUCTURADOS PARA LA ELIMINACION DE FARMACOS Y PRODUCCION ENERGETICA/
Agradecimientos:
The authors acknowledge the financial support from the Ministerio de Economia y Competitividad (Project Code: CTQ2016-79203-R) and its help in the Laser Raman Microscope acquisition (UPOV08-3E-012), and acknowledge co-funding ...[+]
Tipo: Artículo

References

FUJISHIMA, A., ZHANG, X., & TRYK, D. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515-582. doi:10.1016/j.surfrep.2008.10.001

Maeda, K., & Domen, K. (2010). Photocatalytic Water Splitting: Recent Progress and Future Challenges. The Journal of Physical Chemistry Letters, 1(18), 2655-2661. doi:10.1021/jz1007966

Macak, J. M., Zlamal, M., Krysa, J., & Schmuki, P. (2007). Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small, 3(2), 300-304. doi:10.1002/smll.200600426 [+]
FUJISHIMA, A., ZHANG, X., & TRYK, D. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515-582. doi:10.1016/j.surfrep.2008.10.001

Maeda, K., & Domen, K. (2010). Photocatalytic Water Splitting: Recent Progress and Future Challenges. The Journal of Physical Chemistry Letters, 1(18), 2655-2661. doi:10.1021/jz1007966

Macak, J. M., Zlamal, M., Krysa, J., & Schmuki, P. (2007). Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small, 3(2), 300-304. doi:10.1002/smll.200600426

Roy, P., Kim, D., Lee, K., Spiecker, E., & Schmuki, P. (2010). TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale, 2(1), 45-59. doi:10.1039/b9nr00131j

Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21. doi:10.1016/s1389-5567(00)00002-2

Park, J. H., Kim, S., & Bard, A. J. (2006). Novel Carbon-Doped TiO2Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6(1), 24-28. doi:10.1021/nl051807y

Park, J., Bauer, S., von der Mark, K., & Schmuki, P. (2007). Nanosize and Vitality:  TiO2Nanotube Diameter Directs Cell Fate. Nano Letters, 7(6), 1686-1691. doi:10.1021/nl070678d

Chen, X., Liu, L., Yu, P. Y., & Mao, S. S. (2011). Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science, 331(6018), 746-750. doi:10.1126/science.1200448

Xia, T., Zhang, Y., Murowchick, J., & Chen, X. (2014). Vacuum-treated titanium dioxide nanocrystals: Optical properties, surface disorder, oxygen vacancy, and photocatalytic activities. Catalysis Today, 225, 2-9. doi:10.1016/j.cattod.2013.08.026

Chen, X., Schriver, M., Suen, T., & Mao, S. S. (2007). Fabrication of 10 nm diameter TiO2 nanotube arrays by titanium anodization. Thin Solid Films, 515(24), 8511-8514. doi:10.1016/j.tsf.2007.03.110

Ampelli, C., Tavella, F., Perathoner, S., & Centi, G. (2017). Engineering of photoanodes based on ordered TiO 2 -nanotube arrays in solar photo-electrocatalytic (PECa) cells. Chemical Engineering Journal, 320, 352-362. doi:10.1016/j.cej.2017.03.066

Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi:10.1021/cr00033a004

Adachi, M., Murata, Y., Harada, M., & Yoshikawa, S. (2000). Formation of Titania Nanotubes with High Photo-Catalytic Activity. Chemistry Letters, 29(8), 942-943. doi:10.1246/cl.2000.942

Sreethawong, T., Suzuki, Y., & Yoshikawa, S. (2005). Photocatalytic evolution of hydrogen over nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol–gel process. Catalysis Communications, 6(2), 119-124. doi:10.1016/j.catcom.2004.11.011

Tsai, C.-C., Nian, J.-N., & Teng, H. (2006). Mesoporous nanotube aggregates obtained from hydrothermally treating TiO 2 with NaOH. Applied Surface Science, 253(4), 1898-1902. doi:10.1016/j.apsusc.2006.03.035

Paramasivam, I., Jha, H., Liu, N., & Schmuki, P. (2012). A Review of Photocatalysis using Self-organized TiO2Nanotubes and Other Ordered Oxide Nanostructures. Small, 8(20), 3073-3103. doi:10.1002/smll.201200564

D’Elia, D., Beauger, C., Hochepied, J.-F., Rigacci, A., Berger, M.-H., Keller, N., … Achard, P. (2011). Impact of three different TiO2 morphologies on hydrogen evolution by methanol assisted water splitting: Nanoparticles, nanotubes and aerogels. International Journal of Hydrogen Energy, 36(22), 14360-14373. doi:10.1016/j.ijhydene.2011.08.007

Yu, L., Wang, Z., Shi, L., Yuan, S., Zhao, Y., Fang, J., & Deng, W. (2012). Photoelectrocatalytic performance of TiO2 nanoparticles incorporated TiO2 nanotube arrays. Applied Catalysis B: Environmental, 113-114, 318-325. doi:10.1016/j.apcatb.2011.12.004

Wang, D., Zhang, X., Sun, P., Lu, S., Wang, L., Wang, C., & Liu, Y. (2014). Photoelectrochemical Water Splitting with Rutile TiO2 Nanowires Array: Synergistic Effect of Hydrogen Treatment and Surface Modification with Anatase Nanoparticles. Electrochimica Acta, 130, 290-295. doi:10.1016/j.electacta.2014.03.024

Wolcott, A., Smith, W. A., Kuykendall, T. R., Zhao, Y., & Zhang, J. Z. (2009). Photoelectrochemical Water Splitting Using Dense and Aligned TiO2Nanorod Arrays. Small, 5(1), 104-111. doi:10.1002/smll.200800902

Wang, G., Wang, H., Ling, Y., Tang, Y., Yang, X., Fitzmorris, R. C., … Li, Y. (2011). Hydrogen-Treated TiO2Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Letters, 11(7), 3026-3033. doi:10.1021/nl201766h

Macak, J. M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., & Schmuki, P. (2007). TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 11(1-2), 3-18. doi:10.1016/j.cossms.2007.08.004

Muñoz, A. G. (2007). Semiconducting properties of self-organized TiO2 nanotubes. Electrochimica Acta, 52(12), 4167-4176. doi:10.1016/j.electacta.2006.11.035

Pillai, P., Raja, K. S., & Misra, M. (2006). Electrochemical storage of hydrogen in nanotubular TiO2 arrays. Journal of Power Sources, 161(1), 524-530. doi:10.1016/j.jpowsour.2006.03.088

Muñoz, A. G., Chen, Q., & Schmuki, P. (2006). Interfacial properties of self-organized TiO2 nanotubes studied by impedance spectroscopy. Journal of Solid State Electrochemistry, 11(8), 1077-1084. doi:10.1007/s10008-006-0241-9

Tsuchiya, H., Macak, J. M., Ghicov, A., Räder, A. S., Taveira, L., & Schmuki, P. (2007). Characterization of electronic properties of TiO2 nanotube films. Corrosion Science, 49(1), 203-210. doi:10.1016/j.corsci.2006.05.009

MOHAPATRA, S., MISRA, M., MAHAJAN, V., & RAJA, K. (2007). A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. Journal of Catalysis, 246(2), 362-369. doi:10.1016/j.jcat.2006.12.020

Xiao, P., Liu, D., Garcia, B. B., Sepehri, S., Zhang, Y., & Cao, G. (2008). Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases. Sensors and Actuators B: Chemical, 134(2), 367-372. doi:10.1016/j.snb.2008.05.005

Fabregat-Santiago, F., Barea, E. M., Bisquert, J., Mor, G. K., Shankar, K., & Grimes, C. A. (2008). High Carrier Density and Capacitance in TiO2Nanotube Arrays Induced by Electrochemical Doping. Journal of the American Chemical Society, 130(34), 11312-11316. doi:10.1021/ja710899q

Liu, Z., Pesic, B., Raja, K. S., Rangaraju, R. R., & Misra, M. (2009). Hydrogen generation under sunlight by self ordered TiO2 nanotube arrays. International Journal of Hydrogen Energy, 34(8), 3250-3257. doi:10.1016/j.ijhydene.2009.02.044

Wang, D., Liu, Y., Yu, B., Zhou, F., & Liu, W. (2009). TiO2Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-Electrical/Catalytic Performance. Chemistry of Materials, 21(7), 1198-1206. doi:10.1021/cm802384y

Kang, T.-S., Smith, A. P., Taylor, B. E., & Durstock, M. F. (2009). Fabrication of Highly-Ordered TiO2Nanotube Arrays and Their Use in Dye-Sensitized Solar Cells. Nano Letters, 9(2), 601-606. doi:10.1021/nl802818d

Oyarzún, D. P., Córdova, R., Linarez Pérez, O. E., Muñoz, E., Henríquez, R., López Teijelo, M., & Gómez, H. (2010). Morphological, electrochemical and photoelectrochemical characterization of nanotubular TiO2 synthetized electrochemically from different electrolytes. Journal of Solid State Electrochemistry, 15(10), 2265-2275. doi:10.1007/s10008-010-1236-0

Sánchez-Tovar, R., Lee, K., García-Antón, J., & Schmuki, P. (2013). Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynamic conditions. Electrochemistry Communications, 26, 1-4. doi:10.1016/j.elecom.2012.09.041

Aïnouche, L., Hamadou, L., Kadri, A., Benbrahim, N., & Bradai, D. (2014). Interfacial Barrier Layer Properties of Three Generations of TiO2 Nanotube Arrays. Electrochimica Acta, 133, 597-609. doi:10.1016/j.electacta.2014.04.086

Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of Titanium Oxide Nanotube. Langmuir, 14(12), 3160-3163. doi:10.1021/la9713816

Jung, J. H., Kobayashi, H., van Bommel, K. J. C., Shinkai, S., & Shimizu, T. (2002). Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2Structures Using an Organogel Template. Chemistry of Materials, 14(4), 1445-1447. doi:10.1021/cm011625e

Bavykin, D. V., Friedrich, J. M., & Walsh, F. C. (2006). Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications. Advanced Materials, 18(21), 2807-2824. doi:10.1002/adma.200502696

Bavykin, D. V., Parmon, V. N., Lapkin, A. A., & Walsh, F. C. (2004). The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry, 14(22), 3370. doi:10.1039/b406378c

Sánchez-Tovar, R., Paramasivam, I., Lee, K., & Schmuki, P. (2012). Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs. Journal of Materials Chemistry, 22(25), 12792. doi:10.1039/c2jm31246h

Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M. Y., & Aucouturier, M. (1999). Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis, 27(7), 629-637. doi:10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0

Macák, J. M., Tsuchiya, H., & Schmuki, P. (2005). High-Aspect-Ratio TiO2Nanotubes by Anodization of Titanium. Angewandte Chemie International Edition, 44(14), 2100-2102. doi:10.1002/anie.200462459

Sánchez-Tovar, R., Fernández-Domene, R. M., García-García, D. M., & García-Antón, J. (2015). Enhancement of photoelectrochemical activity for water splitting by controlling hydrodynamic conditions on titanium anodization. Journal of Power Sources, 286, 224-231. doi:10.1016/j.jpowsour.2015.03.174

Sanchez-Tovar, R., Lee, K., Garcia-Anton, J., & Schmuki, P. (2012). Photoelectrochemical Poperties of Anodic TiO2 Nanosponge Layers. ECS Electrochemistry Letters, 2(3), H9-H11. doi:10.1149/2.005303eel

Borràs-Ferrís, J., Sánchez-Tovar, R., Blasco-Tamarit, E., Fernández-Domene, R. M., & García-Antón, J. (2016). Effect of Reynolds number and lithium cation insertion on titanium anodization. Electrochimica Acta, 196, 24-32. doi:10.1016/j.electacta.2016.02.160

Ghicov, A., & Schmuki, P. (2009). Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chemical Communications, (20), 2791. doi:10.1039/b822726h

Roy, P., Berger, S., & Schmuki, P. (2011). TiO2 Nanotubes: Synthesis and Applications. Angewandte Chemie International Edition, 50(13), 2904-2939. doi:10.1002/anie.201001374

Beranek, R., Tsuchiya, H., Sugishima, T., Macak, J. M., Taveira, L., Fujimoto, S., … Schmuki, P. (2005). Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. Applied Physics Letters, 87(24), 243114. doi:10.1063/1.2140085

Tsui, L., Saito, M., Homma, T., & Zangari, G. (2015). Trap-state passivation of titania nanotubes by electrochemical doping for enhanced photoelectrochemical performance. Journal of Materials Chemistry A, 3(1), 360-367. doi:10.1039/c4ta05620e

Yang, J., Wang, X., Yang, X., Li, J., Zhang, X., & Zhao, J. (2015). Energy storage ability and anti-corrosion properties of Bi-doped TiO2 nanotube arrays. Electrochimica Acta, 169, 227-232. doi:10.1016/j.electacta.2015.04.076

Momeni, M. M., Ghayeb, Y., & Ghonchegi, Z. (2015). Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceramics International, 41(7), 8735-8741. doi:10.1016/j.ceramint.2015.03.094

Hahn, R., Ghicov, A., Tsuchiya, H., Macak, J. M., Muñoz, A. G., & Schmuki, P. (2007). Lithium-ion insertion in anodic TiO2nanotubes resulting in high electrochromic contrast. physica status solidi (a), 204(5), 1281-1285. doi:10.1002/pssa.200674310

Macak, J. M., Gong, B. G., Hueppe, M., & Schmuki, P. (2007). Filling of TiO2 Nanotubes by Self-Doping and Electrodeposition. Advanced Materials, 19(19), 3027-3031. doi:10.1002/adma.200602549

Shankar, K., Mor, G. K., Prakasam, H. E., Yoriya, S., Paulose, M., Varghese, O. K., & Grimes, C. A. (2007). Highly-ordered TiO2nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology, 18(6), 065707. doi:10.1088/0957-4484/18/6/065707

Regonini, D., Bowen, C. R., Jaroenworaluck, A., & Stevens, R. (2013). A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Materials Science and Engineering: R: Reports, 74(12), 377-406. doi:10.1016/j.mser.2013.10.001

Albu, S. P., Ghicov, A., Macak, J. M., Hahn, R., & Schmuki, P. (2007). Self-Organized, Free-Standing TiO2Nanotube Membrane for Flow-through Photocatalytic Applications. Nano Letters, 7(5), 1286-1289. doi:10.1021/nl070264k

Costa, L. L., & Prado, A. G. S. (2009). TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of indigo carmine dye. Journal of Photochemistry and Photobiology A: Chemistry, 201(1), 45-49. doi:10.1016/j.jphotochem.2008.09.014

Hsiao, P.-T., Wang, K.-P., Cheng, C.-W., & Teng, H. (2007). Nanocrystalline anatase TiO2 derived from a titanate-directed route for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 188(1), 19-24. doi:10.1016/j.jphotochem.2006.11.013

Qian, L., Du, Z.-L., Yang, S.-Y., & Jin, Z.-S. (2005). Raman study of titania nanotube by soft chemical process. Journal of Molecular Structure, 749(1-3), 103-107. doi:10.1016/j.molstruc.2005.04.002

Nishanthi, S. T., Iyyapushpam, S., Sundarakannan, B., Subramanian, E., & Pathinettam Padiyan, D. (2014). Inter-relationship between extent of anatase crystalline phase and photocatalytic activity of TiO2 nanotubes prepared by anodization and annealing method. Separation and Purification Technology, 131, 102-107. doi:10.1016/j.seppur.2014.04.047

Zhou, X., Shi, T., Wu, J., & Zhou, H. (2013). (001) Facet-exposed anatase-phase TiO2 nanotube hybrid reduced graphene oxide composite: Synthesis, characterization and application in photocatalytic degradation. Applied Surface Science, 287, 359-368. doi:10.1016/j.apsusc.2013.09.156

Hou, X., Zhou, J., Huang, S., Ou-Yang, W., Pan, L., & Chen, X. (2017). Efficient quasi-mesoscopic perovskite solar cells using Li-doped hierarchical TiO2 as scaffold of scattered distribution. Chemical Engineering Journal, 330, 947-955. doi:10.1016/j.cej.2017.08.045

Tsui, L., Homma, T., & Zangari, G. (2013). Photocurrent Conversion in Anodized TiO2 Nanotube Arrays: Effect of the Water Content in Anodizing Solutions. The Journal of Physical Chemistry C, 117(14), 6979-6989. doi:10.1021/jp400318n

Brug, G. J., van den Eeden, A. L. G., Sluyters-Rehbach, M., & Sluyters, J. H. (1984). The analysis of electrode impedances complicated by the presence of a constant phase element. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 176(1-2), 275-295. doi:10.1016/s0022-0728(84)80324-1

Hirschorn, B., Orazem, M. E., Tribollet, B., Vivier, V., Frateur, I., & Musiani, M. (2010). Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochimica Acta, 55(21), 6218-6227. doi:10.1016/j.electacta.2009.10.065

Palmas, S., Polcaro, A. M., Ruiz, J. R., Da Pozzo, A., Mascia, M., & Vacca, A. (2010). TiO2 photoanodes for electrically enhanced water splitting. International Journal of Hydrogen Energy, 35(13), 6561-6570. doi:10.1016/j.ijhydene.2010.04.039

Pu, P., Cachet, H., & Sutter, E. M. M. (2010). Electrochemical impedance spectroscopy to study photo - induced effects on self-organized TiO2 nanotube arrays. Electrochimica Acta, 55(20), 5938-5946. doi:10.1016/j.electacta.2010.05.048

Palmas, S., Da Pozzo, A., Mascia, M., Vacca, A., Ardu, A., Matarrese, R., & Nova, I. (2011). Effect of the preparation conditions on the performance of TiO 2 nanotube arrays obtained by electrochemical oxidation. International Journal of Hydrogen Energy, 36(15), 8894-8901. doi:10.1016/j.ijhydene.2011.04.105

Tsui, L., & Zangari, G. (2014). Water content in the anodization electrolyte affects the electrochemical and electronic transport properties of TiO2 nanotubes: a study by electrochemical impedance spectroscopy. Electrochimica Acta, 121, 203-209. doi:10.1016/j.electacta.2013.12.163

Radecka, M., Rekas, M., Trenczek-Zajac, A., & Zakrzewska, K. (2008). Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. Journal of Power Sources, 181(1), 46-55. doi:10.1016/j.jpowsour.2007.10.082

Lu, X., Wang, G., Zhai, T., Yu, M., Gan, J., Tong, Y., & Li, Y. (2012). Hydrogenated TiO2 Nanotube Arrays for Supercapacitors. Nano Letters, 12(3), 1690-1696. doi:10.1021/nl300173j

Radecka, M., Wierzbicka, M., Komornicki, S., & Rekas, M. (2004). Influence of Cr on photoelectrochemical properties of TiO2 thin films. Physica B: Condensed Matter, 348(1-4), 160-168. doi:10.1016/j.physb.2003.11.086

Van de Krol, R., Goossens, A., & Schoonman, J. (1999). Spatial Extent of Lithium Intercalation in Anatase TiO2. The Journal of Physical Chemistry B, 103(34), 7151-7159. doi:10.1021/jp9909964

Wang, Z., Huang, B., Dai, Y., Qin, X., Zhang, X., Wang, P., … Yu, J. (2009). Highly Photocatalytic ZnO/In2O3 Heteronanostructures Synthesized by a Coprecipitation Method. The Journal of Physical Chemistry C, 113(11), 4612-4617. doi:10.1021/jp8107683

Jiang, Z., Dai, X., & Middleton, H. (2011). Investigation on passivity of titanium under steady-state conditions in acidic solutions. Materials Chemistry and Physics, 126(3), 859-865. doi:10.1016/j.matchemphys.2010.12.028

Kong, D.-S., Lu, W.-H., Feng, Y.-Y., Yu, Z.-Y., Wu, J.-X., Fan, W.-J., & Liu, H.-Y. (2009). Studying on the Point-Defect-Conductive Property of the Semiconducting Anodic Oxide Films on Titanium. Journal of The Electrochemical Society, 156(1), C39. doi:10.1149/1.3021008

Sazou, D., Saltidou, K., & Pagitsas, M. (2012). Understanding the effect of bromides on the stability of titanium oxide films based on a point defect model. Electrochimica Acta, 76, 48-61. doi:10.1016/j.electacta.2012.04.158

Roh, B., & Macdonald, D. D. (2007). Effect of oxygen vacancies in anodic titanium oxide films on the kinetics of the oxygen electrode reaction. Russian Journal of Electrochemistry, 43(2), 125-135. doi:10.1134/s1023193507020012

Peng, H. (2008). First-principles study of native defects in rutile TiO2. Physics Letters A, 372(9), 1527-1530. doi:10.1016/j.physleta.2007.10.011

CARP, O. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1-2), 33-177. doi:10.1016/j.progsolidstchem.2004.08.001

KONIG, U. (1992). The examination of the influence of a space-charge layer on the formation kinetics of thin passive films by Schottky-Mott analysis. Solid State Ionics, 53-56, 255-264. doi:10.1016/0167-2738(92)90388-6

Morgan, B. J., & Watson, G. W. (2009). Polaronic trapping of electrons and holes by native defects in anataseTiO2. Physical Review B, 80(23). doi:10.1103/physrevb.80.233102

Irie, H., Watanabe, Y., & Hashimoto, K. (2003). Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNxPowders. The Journal of Physical Chemistry B, 107(23), 5483-5486. doi:10.1021/jp030133h

Kang, U., & Park, H. (2013). Lithium ion-inserted TiO2 nanotube array photoelectrocatalysts. Applied Catalysis B: Environmental, 140-141, 233-240. doi:10.1016/j.apcatb.2013.04.003

Meekins, B. H., & Kamat, P. V. (2009). Got TiO2 Nanotubes? Lithium Ion Intercalation Can Boost Their Photoelectrochemical Performance. ACS Nano, 3(11), 3437-3446. doi:10.1021/nn900897r

Ke, S.-C., Wang, T.-C., Wong, M.-S., & Gopal, N. O. (2006). Low Temperature Kinetics and Energetics of the Electron and Hole Traps in Irradiated TiO2Nanoparticles as Revealed by EPR Spectroscopy. The Journal of Physical Chemistry B, 110(24), 11628-11634. doi:10.1021/jp0612578

Berger, T., Sterrer, M., Diwald, O., Knözinger, E., Panayotov, D., Thompson, T. L., & Yates, J. T. (2005). Light-Induced Charge Separation in Anatase TiO2Particles. The Journal of Physical Chemistry B, 109(13), 6061-6068. doi:10.1021/jp0404293

Sánchez-Tovar, R., Fernández-Domene, R. M., Martínez-Sánchez, A., Blasco-Tamarit, E., & García-Antón, J. (2015). Synergistic effect between hydrodynamic conditions during Ti anodization and acidic treatment on the photoelectric properties of TiO2 nanotubes. Journal of Catalysis, 330, 434-441. doi:10.1016/j.jcat.2015.08.002

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem