Mostrar el registro sencillo del ítem
dc.contributor.author | Blasco-Tamarit, E.![]() |
es_ES |
dc.contributor.author | Muñoz-Portero, María-José![]() |
es_ES |
dc.contributor.author | Sánchez Tovar, Rita![]() |
es_ES |
dc.contributor.author | Fernández Domene, Ramón Manuel![]() |
es_ES |
dc.contributor.author | Garcia-Anton, Jose![]() |
es_ES |
dc.date.accessioned | 2020-06-10T03:31:47Z | |
dc.date.available | 2020-06-10T03:31:47Z | |
dc.date.issued | 2018-07-07 | es_ES |
dc.identifier.issn | 1144-0546 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145856 | |
dc.description.abstract | [EN] Anatase TiO2 nanosponges have been synthesized by anodization of Ti, and Li+ cations have been inserted in these nanostructures. The influence of hydrodynamic conditions (Reynolds number, Re = 0 to Re = 600) during anodization has been studied. Li-Doped TiO2 nanosponges were characterized by field emission scanning electron microscopy (FE-SEM), Raman confocal microscopy, electrochemical impedance spectroscopy (EIS) and Mott¿Schottky analysis (M¿S). The photoelectrochemical performance and resistance to photocorrosion were also measured. Li¿TiO2 nanosponges proved to be better photocatalysts for water splitting than Li¿TiO2 nanotubes. Moreover, the photoelectrochemical behavior of the Li-doped nanosponges improved as the Reynolds number increased. | es_ES |
dc.description.sponsorship | The authors acknowledge the financial support from the Ministerio de Economia y Competitividad (Project Code: CTQ2016-79203-R) and its help in the Laser Raman Microscope acquisition (UPOV08-3E-012), and acknowledge co-funding by the European Social Fund. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | New Journal of Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | TiO2 | es_ES |
dc.subject | Nanosponges | es_ES |
dc.subject | Li-doped | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Effect of Reynolds number on TiO2 nanosponges doped with Li+ cations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c8nj00800k | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//UPOV08-3E-001/ES/Utilización de Desktop Microscopy System (DMS) en el campo de los materiales/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2016-79203-R/ES/MODIFICACION DE FOTOCATALIZADORES DE OXIDOS METALICOS NANOESTRUCTURADOS PARA LA ELIMINACION DE FARMACOS Y PRODUCCION ENERGETICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Blasco-Tamarit, E.; Muñoz-Portero, M.; Sánchez Tovar, R.; Fernández Domene, RM.; Garcia-Anton, J. (2018). Effect of Reynolds number on TiO2 nanosponges doped with Li+ cations. New Journal of Chemistry. 42(13):11054-11063. https://doi.org/10.1039/c8nj00800k | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c8nj00800k | es_ES |
dc.description.upvformatpinicio | 11054 | es_ES |
dc.description.upvformatpfin | 11063 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 42 | es_ES |
dc.description.issue | 13 | es_ES |
dc.relation.pasarela | S\368942 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | FUJISHIMA, A., ZHANG, X., & TRYK, D. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515-582. doi:10.1016/j.surfrep.2008.10.001 | es_ES |
dc.description.references | Maeda, K., & Domen, K. (2010). Photocatalytic Water Splitting: Recent Progress and Future Challenges. The Journal of Physical Chemistry Letters, 1(18), 2655-2661. doi:10.1021/jz1007966 | es_ES |
dc.description.references | Macak, J. M., Zlamal, M., Krysa, J., & Schmuki, P. (2007). Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small, 3(2), 300-304. doi:10.1002/smll.200600426 | es_ES |
dc.description.references | Roy, P., Kim, D., Lee, K., Spiecker, E., & Schmuki, P. (2010). TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale, 2(1), 45-59. doi:10.1039/b9nr00131j | es_ES |
dc.description.references | Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21. doi:10.1016/s1389-5567(00)00002-2 | es_ES |
dc.description.references | Park, J. H., Kim, S., & Bard, A. J. (2006). Novel Carbon-Doped TiO2Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6(1), 24-28. doi:10.1021/nl051807y | es_ES |
dc.description.references | Park, J., Bauer, S., von der Mark, K., & Schmuki, P. (2007). Nanosize and Vitality: TiO2Nanotube Diameter Directs Cell Fate. Nano Letters, 7(6), 1686-1691. doi:10.1021/nl070678d | es_ES |
dc.description.references | Chen, X., Liu, L., Yu, P. Y., & Mao, S. S. (2011). Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science, 331(6018), 746-750. doi:10.1126/science.1200448 | es_ES |
dc.description.references | Xia, T., Zhang, Y., Murowchick, J., & Chen, X. (2014). Vacuum-treated titanium dioxide nanocrystals: Optical properties, surface disorder, oxygen vacancy, and photocatalytic activities. Catalysis Today, 225, 2-9. doi:10.1016/j.cattod.2013.08.026 | es_ES |
dc.description.references | Chen, X., Schriver, M., Suen, T., & Mao, S. S. (2007). Fabrication of 10 nm diameter TiO2 nanotube arrays by titanium anodization. Thin Solid Films, 515(24), 8511-8514. doi:10.1016/j.tsf.2007.03.110 | es_ES |
dc.description.references | Ampelli, C., Tavella, F., Perathoner, S., & Centi, G. (2017). Engineering of photoanodes based on ordered TiO 2 -nanotube arrays in solar photo-electrocatalytic (PECa) cells. Chemical Engineering Journal, 320, 352-362. doi:10.1016/j.cej.2017.03.066 | es_ES |
dc.description.references | Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi:10.1021/cr00033a004 | es_ES |
dc.description.references | Adachi, M., Murata, Y., Harada, M., & Yoshikawa, S. (2000). Formation of Titania Nanotubes with High Photo-Catalytic Activity. Chemistry Letters, 29(8), 942-943. doi:10.1246/cl.2000.942 | es_ES |
dc.description.references | Sreethawong, T., Suzuki, Y., & Yoshikawa, S. (2005). Photocatalytic evolution of hydrogen over nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol–gel process. Catalysis Communications, 6(2), 119-124. doi:10.1016/j.catcom.2004.11.011 | es_ES |
dc.description.references | Tsai, C.-C., Nian, J.-N., & Teng, H. (2006). Mesoporous nanotube aggregates obtained from hydrothermally treating TiO 2 with NaOH. Applied Surface Science, 253(4), 1898-1902. doi:10.1016/j.apsusc.2006.03.035 | es_ES |
dc.description.references | Paramasivam, I., Jha, H., Liu, N., & Schmuki, P. (2012). A Review of Photocatalysis using Self-organized TiO2Nanotubes and Other Ordered Oxide Nanostructures. Small, 8(20), 3073-3103. doi:10.1002/smll.201200564 | es_ES |
dc.description.references | D’Elia, D., Beauger, C., Hochepied, J.-F., Rigacci, A., Berger, M.-H., Keller, N., … Achard, P. (2011). Impact of three different TiO2 morphologies on hydrogen evolution by methanol assisted water splitting: Nanoparticles, nanotubes and aerogels. International Journal of Hydrogen Energy, 36(22), 14360-14373. doi:10.1016/j.ijhydene.2011.08.007 | es_ES |
dc.description.references | Yu, L., Wang, Z., Shi, L., Yuan, S., Zhao, Y., Fang, J., & Deng, W. (2012). Photoelectrocatalytic performance of TiO2 nanoparticles incorporated TiO2 nanotube arrays. Applied Catalysis B: Environmental, 113-114, 318-325. doi:10.1016/j.apcatb.2011.12.004 | es_ES |
dc.description.references | Wang, D., Zhang, X., Sun, P., Lu, S., Wang, L., Wang, C., & Liu, Y. (2014). Photoelectrochemical Water Splitting with Rutile TiO2 Nanowires Array: Synergistic Effect of Hydrogen Treatment and Surface Modification with Anatase Nanoparticles. Electrochimica Acta, 130, 290-295. doi:10.1016/j.electacta.2014.03.024 | es_ES |
dc.description.references | Wolcott, A., Smith, W. A., Kuykendall, T. R., Zhao, Y., & Zhang, J. Z. (2009). Photoelectrochemical Water Splitting Using Dense and Aligned TiO2Nanorod Arrays. Small, 5(1), 104-111. doi:10.1002/smll.200800902 | es_ES |
dc.description.references | Wang, G., Wang, H., Ling, Y., Tang, Y., Yang, X., Fitzmorris, R. C., … Li, Y. (2011). Hydrogen-Treated TiO2Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Letters, 11(7), 3026-3033. doi:10.1021/nl201766h | es_ES |
dc.description.references | Macak, J. M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., & Schmuki, P. (2007). TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 11(1-2), 3-18. doi:10.1016/j.cossms.2007.08.004 | es_ES |
dc.description.references | Muñoz, A. G. (2007). Semiconducting properties of self-organized TiO2 nanotubes. Electrochimica Acta, 52(12), 4167-4176. doi:10.1016/j.electacta.2006.11.035 | es_ES |
dc.description.references | Pillai, P., Raja, K. S., & Misra, M. (2006). Electrochemical storage of hydrogen in nanotubular TiO2 arrays. Journal of Power Sources, 161(1), 524-530. doi:10.1016/j.jpowsour.2006.03.088 | es_ES |
dc.description.references | Muñoz, A. G., Chen, Q., & Schmuki, P. (2006). Interfacial properties of self-organized TiO2 nanotubes studied by impedance spectroscopy. Journal of Solid State Electrochemistry, 11(8), 1077-1084. doi:10.1007/s10008-006-0241-9 | es_ES |
dc.description.references | Tsuchiya, H., Macak, J. M., Ghicov, A., Räder, A. S., Taveira, L., & Schmuki, P. (2007). Characterization of electronic properties of TiO2 nanotube films. Corrosion Science, 49(1), 203-210. doi:10.1016/j.corsci.2006.05.009 | es_ES |
dc.description.references | MOHAPATRA, S., MISRA, M., MAHAJAN, V., & RAJA, K. (2007). A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. Journal of Catalysis, 246(2), 362-369. doi:10.1016/j.jcat.2006.12.020 | es_ES |
dc.description.references | Xiao, P., Liu, D., Garcia, B. B., Sepehri, S., Zhang, Y., & Cao, G. (2008). Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases. Sensors and Actuators B: Chemical, 134(2), 367-372. doi:10.1016/j.snb.2008.05.005 | es_ES |
dc.description.references | Fabregat-Santiago, F., Barea, E. M., Bisquert, J., Mor, G. K., Shankar, K., & Grimes, C. A. (2008). High Carrier Density and Capacitance in TiO2Nanotube Arrays Induced by Electrochemical Doping. Journal of the American Chemical Society, 130(34), 11312-11316. doi:10.1021/ja710899q | es_ES |
dc.description.references | Liu, Z., Pesic, B., Raja, K. S., Rangaraju, R. R., & Misra, M. (2009). Hydrogen generation under sunlight by self ordered TiO2 nanotube arrays. International Journal of Hydrogen Energy, 34(8), 3250-3257. doi:10.1016/j.ijhydene.2009.02.044 | es_ES |
dc.description.references | Wang, D., Liu, Y., Yu, B., Zhou, F., & Liu, W. (2009). TiO2Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-Electrical/Catalytic Performance. Chemistry of Materials, 21(7), 1198-1206. doi:10.1021/cm802384y | es_ES |
dc.description.references | Kang, T.-S., Smith, A. P., Taylor, B. E., & Durstock, M. F. (2009). Fabrication of Highly-Ordered TiO2Nanotube Arrays and Their Use in Dye-Sensitized Solar Cells. Nano Letters, 9(2), 601-606. doi:10.1021/nl802818d | es_ES |
dc.description.references | Oyarzún, D. P., Córdova, R., Linarez Pérez, O. E., Muñoz, E., Henríquez, R., López Teijelo, M., & Gómez, H. (2010). Morphological, electrochemical and photoelectrochemical characterization of nanotubular TiO2 synthetized electrochemically from different electrolytes. Journal of Solid State Electrochemistry, 15(10), 2265-2275. doi:10.1007/s10008-010-1236-0 | es_ES |
dc.description.references | Sánchez-Tovar, R., Lee, K., García-Antón, J., & Schmuki, P. (2013). Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynamic conditions. Electrochemistry Communications, 26, 1-4. doi:10.1016/j.elecom.2012.09.041 | es_ES |
dc.description.references | Aïnouche, L., Hamadou, L., Kadri, A., Benbrahim, N., & Bradai, D. (2014). Interfacial Barrier Layer Properties of Three Generations of TiO2 Nanotube Arrays. Electrochimica Acta, 133, 597-609. doi:10.1016/j.electacta.2014.04.086 | es_ES |
dc.description.references | Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of Titanium Oxide Nanotube. Langmuir, 14(12), 3160-3163. doi:10.1021/la9713816 | es_ES |
dc.description.references | Jung, J. H., Kobayashi, H., van Bommel, K. J. C., Shinkai, S., & Shimizu, T. (2002). Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2Structures Using an Organogel Template. Chemistry of Materials, 14(4), 1445-1447. doi:10.1021/cm011625e | es_ES |
dc.description.references | Bavykin, D. V., Friedrich, J. M., & Walsh, F. C. (2006). Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications. Advanced Materials, 18(21), 2807-2824. doi:10.1002/adma.200502696 | es_ES |
dc.description.references | Bavykin, D. V., Parmon, V. N., Lapkin, A. A., & Walsh, F. C. (2004). The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry, 14(22), 3370. doi:10.1039/b406378c | es_ES |
dc.description.references | Sánchez-Tovar, R., Paramasivam, I., Lee, K., & Schmuki, P. (2012). Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs. Journal of Materials Chemistry, 22(25), 12792. doi:10.1039/c2jm31246h | es_ES |
dc.description.references | Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M. Y., & Aucouturier, M. (1999). Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis, 27(7), 629-637. doi:10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0 | es_ES |
dc.description.references | Macák, J. M., Tsuchiya, H., & Schmuki, P. (2005). High-Aspect-Ratio TiO2Nanotubes by Anodization of Titanium. Angewandte Chemie International Edition, 44(14), 2100-2102. doi:10.1002/anie.200462459 | es_ES |
dc.description.references | Sánchez-Tovar, R., Fernández-Domene, R. M., García-García, D. M., & García-Antón, J. (2015). Enhancement of photoelectrochemical activity for water splitting by controlling hydrodynamic conditions on titanium anodization. Journal of Power Sources, 286, 224-231. doi:10.1016/j.jpowsour.2015.03.174 | es_ES |
dc.description.references | Sanchez-Tovar, R., Lee, K., Garcia-Anton, J., & Schmuki, P. (2012). Photoelectrochemical Poperties of Anodic TiO2 Nanosponge Layers. ECS Electrochemistry Letters, 2(3), H9-H11. doi:10.1149/2.005303eel | es_ES |
dc.description.references | Borràs-Ferrís, J., Sánchez-Tovar, R., Blasco-Tamarit, E., Fernández-Domene, R. M., & García-Antón, J. (2016). Effect of Reynolds number and lithium cation insertion on titanium anodization. Electrochimica Acta, 196, 24-32. doi:10.1016/j.electacta.2016.02.160 | es_ES |
dc.description.references | Ghicov, A., & Schmuki, P. (2009). Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chemical Communications, (20), 2791. doi:10.1039/b822726h | es_ES |
dc.description.references | Roy, P., Berger, S., & Schmuki, P. (2011). TiO2 Nanotubes: Synthesis and Applications. Angewandte Chemie International Edition, 50(13), 2904-2939. doi:10.1002/anie.201001374 | es_ES |
dc.description.references | Beranek, R., Tsuchiya, H., Sugishima, T., Macak, J. M., Taveira, L., Fujimoto, S., … Schmuki, P. (2005). Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. Applied Physics Letters, 87(24), 243114. doi:10.1063/1.2140085 | es_ES |
dc.description.references | Tsui, L., Saito, M., Homma, T., & Zangari, G. (2015). Trap-state passivation of titania nanotubes by electrochemical doping for enhanced photoelectrochemical performance. Journal of Materials Chemistry A, 3(1), 360-367. doi:10.1039/c4ta05620e | es_ES |
dc.description.references | Yang, J., Wang, X., Yang, X., Li, J., Zhang, X., & Zhao, J. (2015). Energy storage ability and anti-corrosion properties of Bi-doped TiO2 nanotube arrays. Electrochimica Acta, 169, 227-232. doi:10.1016/j.electacta.2015.04.076 | es_ES |
dc.description.references | Momeni, M. M., Ghayeb, Y., & Ghonchegi, Z. (2015). Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceramics International, 41(7), 8735-8741. doi:10.1016/j.ceramint.2015.03.094 | es_ES |
dc.description.references | Hahn, R., Ghicov, A., Tsuchiya, H., Macak, J. M., Muñoz, A. G., & Schmuki, P. (2007). Lithium-ion insertion in anodic TiO2nanotubes resulting in high electrochromic contrast. physica status solidi (a), 204(5), 1281-1285. doi:10.1002/pssa.200674310 | es_ES |
dc.description.references | Macak, J. M., Gong, B. G., Hueppe, M., & Schmuki, P. (2007). Filling of TiO2 Nanotubes by Self-Doping and Electrodeposition. Advanced Materials, 19(19), 3027-3031. doi:10.1002/adma.200602549 | es_ES |
dc.description.references | Shankar, K., Mor, G. K., Prakasam, H. E., Yoriya, S., Paulose, M., Varghese, O. K., & Grimes, C. A. (2007). Highly-ordered TiO2nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology, 18(6), 065707. doi:10.1088/0957-4484/18/6/065707 | es_ES |
dc.description.references | Regonini, D., Bowen, C. R., Jaroenworaluck, A., & Stevens, R. (2013). A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Materials Science and Engineering: R: Reports, 74(12), 377-406. doi:10.1016/j.mser.2013.10.001 | es_ES |
dc.description.references | Albu, S. P., Ghicov, A., Macak, J. M., Hahn, R., & Schmuki, P. (2007). Self-Organized, Free-Standing TiO2Nanotube Membrane for Flow-through Photocatalytic Applications. Nano Letters, 7(5), 1286-1289. doi:10.1021/nl070264k | es_ES |
dc.description.references | Costa, L. L., & Prado, A. G. S. (2009). TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of indigo carmine dye. Journal of Photochemistry and Photobiology A: Chemistry, 201(1), 45-49. doi:10.1016/j.jphotochem.2008.09.014 | es_ES |
dc.description.references | Hsiao, P.-T., Wang, K.-P., Cheng, C.-W., & Teng, H. (2007). Nanocrystalline anatase TiO2 derived from a titanate-directed route for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 188(1), 19-24. doi:10.1016/j.jphotochem.2006.11.013 | es_ES |
dc.description.references | Qian, L., Du, Z.-L., Yang, S.-Y., & Jin, Z.-S. (2005). Raman study of titania nanotube by soft chemical process. Journal of Molecular Structure, 749(1-3), 103-107. doi:10.1016/j.molstruc.2005.04.002 | es_ES |
dc.description.references | Nishanthi, S. T., Iyyapushpam, S., Sundarakannan, B., Subramanian, E., & Pathinettam Padiyan, D. (2014). Inter-relationship between extent of anatase crystalline phase and photocatalytic activity of TiO2 nanotubes prepared by anodization and annealing method. Separation and Purification Technology, 131, 102-107. doi:10.1016/j.seppur.2014.04.047 | es_ES |
dc.description.references | Zhou, X., Shi, T., Wu, J., & Zhou, H. (2013). (001) Facet-exposed anatase-phase TiO2 nanotube hybrid reduced graphene oxide composite: Synthesis, characterization and application in photocatalytic degradation. Applied Surface Science, 287, 359-368. doi:10.1016/j.apsusc.2013.09.156 | es_ES |
dc.description.references | Hou, X., Zhou, J., Huang, S., Ou-Yang, W., Pan, L., & Chen, X. (2017). Efficient quasi-mesoscopic perovskite solar cells using Li-doped hierarchical TiO2 as scaffold of scattered distribution. Chemical Engineering Journal, 330, 947-955. doi:10.1016/j.cej.2017.08.045 | es_ES |
dc.description.references | Tsui, L., Homma, T., & Zangari, G. (2013). Photocurrent Conversion in Anodized TiO2 Nanotube Arrays: Effect of the Water Content in Anodizing Solutions. The Journal of Physical Chemistry C, 117(14), 6979-6989. doi:10.1021/jp400318n | es_ES |
dc.description.references | Brug, G. J., van den Eeden, A. L. G., Sluyters-Rehbach, M., & Sluyters, J. H. (1984). The analysis of electrode impedances complicated by the presence of a constant phase element. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 176(1-2), 275-295. doi:10.1016/s0022-0728(84)80324-1 | es_ES |
dc.description.references | Hirschorn, B., Orazem, M. E., Tribollet, B., Vivier, V., Frateur, I., & Musiani, M. (2010). Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochimica Acta, 55(21), 6218-6227. doi:10.1016/j.electacta.2009.10.065 | es_ES |
dc.description.references | Palmas, S., Polcaro, A. M., Ruiz, J. R., Da Pozzo, A., Mascia, M., & Vacca, A. (2010). TiO2 photoanodes for electrically enhanced water splitting. International Journal of Hydrogen Energy, 35(13), 6561-6570. doi:10.1016/j.ijhydene.2010.04.039 | es_ES |
dc.description.references | Pu, P., Cachet, H., & Sutter, E. M. M. (2010). Electrochemical impedance spectroscopy to study photo - induced effects on self-organized TiO2 nanotube arrays. Electrochimica Acta, 55(20), 5938-5946. doi:10.1016/j.electacta.2010.05.048 | es_ES |
dc.description.references | Palmas, S., Da Pozzo, A., Mascia, M., Vacca, A., Ardu, A., Matarrese, R., & Nova, I. (2011). Effect of the preparation conditions on the performance of TiO 2 nanotube arrays obtained by electrochemical oxidation. International Journal of Hydrogen Energy, 36(15), 8894-8901. doi:10.1016/j.ijhydene.2011.04.105 | es_ES |
dc.description.references | Tsui, L., & Zangari, G. (2014). Water content in the anodization electrolyte affects the electrochemical and electronic transport properties of TiO2 nanotubes: a study by electrochemical impedance spectroscopy. Electrochimica Acta, 121, 203-209. doi:10.1016/j.electacta.2013.12.163 | es_ES |
dc.description.references | Radecka, M., Rekas, M., Trenczek-Zajac, A., & Zakrzewska, K. (2008). Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. Journal of Power Sources, 181(1), 46-55. doi:10.1016/j.jpowsour.2007.10.082 | es_ES |
dc.description.references | Lu, X., Wang, G., Zhai, T., Yu, M., Gan, J., Tong, Y., & Li, Y. (2012). Hydrogenated TiO2 Nanotube Arrays for Supercapacitors. Nano Letters, 12(3), 1690-1696. doi:10.1021/nl300173j | es_ES |
dc.description.references | Radecka, M., Wierzbicka, M., Komornicki, S., & Rekas, M. (2004). Influence of Cr on photoelectrochemical properties of TiO2 thin films. Physica B: Condensed Matter, 348(1-4), 160-168. doi:10.1016/j.physb.2003.11.086 | es_ES |
dc.description.references | Van de Krol, R., Goossens, A., & Schoonman, J. (1999). Spatial Extent of Lithium Intercalation in Anatase TiO2. The Journal of Physical Chemistry B, 103(34), 7151-7159. doi:10.1021/jp9909964 | es_ES |
dc.description.references | Wang, Z., Huang, B., Dai, Y., Qin, X., Zhang, X., Wang, P., … Yu, J. (2009). Highly Photocatalytic ZnO/In2O3 Heteronanostructures Synthesized by a Coprecipitation Method. The Journal of Physical Chemistry C, 113(11), 4612-4617. doi:10.1021/jp8107683 | es_ES |
dc.description.references | Jiang, Z., Dai, X., & Middleton, H. (2011). Investigation on passivity of titanium under steady-state conditions in acidic solutions. Materials Chemistry and Physics, 126(3), 859-865. doi:10.1016/j.matchemphys.2010.12.028 | es_ES |
dc.description.references | Kong, D.-S., Lu, W.-H., Feng, Y.-Y., Yu, Z.-Y., Wu, J.-X., Fan, W.-J., & Liu, H.-Y. (2009). Studying on the Point-Defect-Conductive Property of the Semiconducting Anodic Oxide Films on Titanium. Journal of The Electrochemical Society, 156(1), C39. doi:10.1149/1.3021008 | es_ES |
dc.description.references | Sazou, D., Saltidou, K., & Pagitsas, M. (2012). Understanding the effect of bromides on the stability of titanium oxide films based on a point defect model. Electrochimica Acta, 76, 48-61. doi:10.1016/j.electacta.2012.04.158 | es_ES |
dc.description.references | Roh, B., & Macdonald, D. D. (2007). Effect of oxygen vacancies in anodic titanium oxide films on the kinetics of the oxygen electrode reaction. Russian Journal of Electrochemistry, 43(2), 125-135. doi:10.1134/s1023193507020012 | es_ES |
dc.description.references | Peng, H. (2008). First-principles study of native defects in rutile TiO2. Physics Letters A, 372(9), 1527-1530. doi:10.1016/j.physleta.2007.10.011 | es_ES |
dc.description.references | CARP, O. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1-2), 33-177. doi:10.1016/j.progsolidstchem.2004.08.001 | es_ES |
dc.description.references | KONIG, U. (1992). The examination of the influence of a space-charge layer on the formation kinetics of thin passive films by Schottky-Mott analysis. Solid State Ionics, 53-56, 255-264. doi:10.1016/0167-2738(92)90388-6 | es_ES |
dc.description.references | Morgan, B. J., & Watson, G. W. (2009). Polaronic trapping of electrons and holes by native defects in anataseTiO2. Physical Review B, 80(23). doi:10.1103/physrevb.80.233102 | es_ES |
dc.description.references | Irie, H., Watanabe, Y., & Hashimoto, K. (2003). Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNxPowders. The Journal of Physical Chemistry B, 107(23), 5483-5486. doi:10.1021/jp030133h | es_ES |
dc.description.references | Kang, U., & Park, H. (2013). Lithium ion-inserted TiO2 nanotube array photoelectrocatalysts. Applied Catalysis B: Environmental, 140-141, 233-240. doi:10.1016/j.apcatb.2013.04.003 | es_ES |
dc.description.references | Meekins, B. H., & Kamat, P. V. (2009). Got TiO2 Nanotubes? Lithium Ion Intercalation Can Boost Their Photoelectrochemical Performance. ACS Nano, 3(11), 3437-3446. doi:10.1021/nn900897r | es_ES |
dc.description.references | Ke, S.-C., Wang, T.-C., Wong, M.-S., & Gopal, N. O. (2006). Low Temperature Kinetics and Energetics of the Electron and Hole Traps in Irradiated TiO2Nanoparticles as Revealed by EPR Spectroscopy. The Journal of Physical Chemistry B, 110(24), 11628-11634. doi:10.1021/jp0612578 | es_ES |
dc.description.references | Berger, T., Sterrer, M., Diwald, O., Knözinger, E., Panayotov, D., Thompson, T. L., & Yates, J. T. (2005). Light-Induced Charge Separation in Anatase TiO2Particles. The Journal of Physical Chemistry B, 109(13), 6061-6068. doi:10.1021/jp0404293 | es_ES |
dc.description.references | Sánchez-Tovar, R., Fernández-Domene, R. M., Martínez-Sánchez, A., Blasco-Tamarit, E., & García-Antón, J. (2015). Synergistic effect between hydrodynamic conditions during Ti anodization and acidic treatment on the photoelectric properties of TiO2 nanotubes. Journal of Catalysis, 330, 434-441. doi:10.1016/j.jcat.2015.08.002 | es_ES |