- -

Effect of Reynolds number on TiO2 nanosponges doped with Li+ cations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of Reynolds number on TiO2 nanosponges doped with Li+ cations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blasco-Tamarit, E. es_ES
dc.contributor.author Muñoz-Portero, María-José es_ES
dc.contributor.author Sánchez Tovar, Rita es_ES
dc.contributor.author Fernández Domene, Ramón Manuel es_ES
dc.contributor.author Garcia-Anton, Jose es_ES
dc.date.accessioned 2020-06-10T03:31:47Z
dc.date.available 2020-06-10T03:31:47Z
dc.date.issued 2018-07-07 es_ES
dc.identifier.issn 1144-0546 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145856
dc.description.abstract [EN] Anatase TiO2 nanosponges have been synthesized by anodization of Ti, and Li+ cations have been inserted in these nanostructures. The influence of hydrodynamic conditions (Reynolds number, Re = 0 to Re = 600) during anodization has been studied. Li-Doped TiO2 nanosponges were characterized by field emission scanning electron microscopy (FE-SEM), Raman confocal microscopy, electrochemical impedance spectroscopy (EIS) and Mott¿Schottky analysis (M¿S). The photoelectrochemical performance and resistance to photocorrosion were also measured. Li¿TiO2 nanosponges proved to be better photocatalysts for water splitting than Li¿TiO2 nanotubes. Moreover, the photoelectrochemical behavior of the Li-doped nanosponges improved as the Reynolds number increased. es_ES
dc.description.sponsorship The authors acknowledge the financial support from the Ministerio de Economia y Competitividad (Project Code: CTQ2016-79203-R) and its help in the Laser Raman Microscope acquisition (UPOV08-3E-012), and acknowledge co-funding by the European Social Fund. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof New Journal of Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject TiO2 es_ES
dc.subject Nanosponges es_ES
dc.subject Li-doped es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Effect of Reynolds number on TiO2 nanosponges doped with Li+ cations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8nj00800k es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//UPOV08-3E-001/ES/Utilización de Desktop Microscopy System (DMS) en el campo de los materiales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-79203-R/ES/MODIFICACION DE FOTOCATALIZADORES DE OXIDOS METALICOS NANOESTRUCTURADOS PARA LA ELIMINACION DE FARMACOS Y PRODUCCION ENERGETICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Blasco-Tamarit, E.; Muñoz-Portero, M.; Sánchez Tovar, R.; Fernández Domene, RM.; Garcia-Anton, J. (2018). Effect of Reynolds number on TiO2 nanosponges doped with Li+ cations. New Journal of Chemistry. 42(13):11054-11063. https://doi.org/10.1039/c8nj00800k es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8nj00800k es_ES
dc.description.upvformatpinicio 11054 es_ES
dc.description.upvformatpfin 11063 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.description.issue 13 es_ES
dc.relation.pasarela S\368942 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references FUJISHIMA, A., ZHANG, X., & TRYK, D. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515-582. doi:10.1016/j.surfrep.2008.10.001 es_ES
dc.description.references Maeda, K., & Domen, K. (2010). Photocatalytic Water Splitting: Recent Progress and Future Challenges. The Journal of Physical Chemistry Letters, 1(18), 2655-2661. doi:10.1021/jz1007966 es_ES
dc.description.references Macak, J. M., Zlamal, M., Krysa, J., & Schmuki, P. (2007). Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small, 3(2), 300-304. doi:10.1002/smll.200600426 es_ES
dc.description.references Roy, P., Kim, D., Lee, K., Spiecker, E., & Schmuki, P. (2010). TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale, 2(1), 45-59. doi:10.1039/b9nr00131j es_ES
dc.description.references Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21. doi:10.1016/s1389-5567(00)00002-2 es_ES
dc.description.references Park, J. H., Kim, S., & Bard, A. J. (2006). Novel Carbon-Doped TiO2Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6(1), 24-28. doi:10.1021/nl051807y es_ES
dc.description.references Park, J., Bauer, S., von der Mark, K., & Schmuki, P. (2007). Nanosize and Vitality:  TiO2Nanotube Diameter Directs Cell Fate. Nano Letters, 7(6), 1686-1691. doi:10.1021/nl070678d es_ES
dc.description.references Chen, X., Liu, L., Yu, P. Y., & Mao, S. S. (2011). Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science, 331(6018), 746-750. doi:10.1126/science.1200448 es_ES
dc.description.references Xia, T., Zhang, Y., Murowchick, J., & Chen, X. (2014). Vacuum-treated titanium dioxide nanocrystals: Optical properties, surface disorder, oxygen vacancy, and photocatalytic activities. Catalysis Today, 225, 2-9. doi:10.1016/j.cattod.2013.08.026 es_ES
dc.description.references Chen, X., Schriver, M., Suen, T., & Mao, S. S. (2007). Fabrication of 10 nm diameter TiO2 nanotube arrays by titanium anodization. Thin Solid Films, 515(24), 8511-8514. doi:10.1016/j.tsf.2007.03.110 es_ES
dc.description.references Ampelli, C., Tavella, F., Perathoner, S., & Centi, G. (2017). Engineering of photoanodes based on ordered TiO 2 -nanotube arrays in solar photo-electrocatalytic (PECa) cells. Chemical Engineering Journal, 320, 352-362. doi:10.1016/j.cej.2017.03.066 es_ES
dc.description.references Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi:10.1021/cr00033a004 es_ES
dc.description.references Adachi, M., Murata, Y., Harada, M., & Yoshikawa, S. (2000). Formation of Titania Nanotubes with High Photo-Catalytic Activity. Chemistry Letters, 29(8), 942-943. doi:10.1246/cl.2000.942 es_ES
dc.description.references Sreethawong, T., Suzuki, Y., & Yoshikawa, S. (2005). Photocatalytic evolution of hydrogen over nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol–gel process. Catalysis Communications, 6(2), 119-124. doi:10.1016/j.catcom.2004.11.011 es_ES
dc.description.references Tsai, C.-C., Nian, J.-N., & Teng, H. (2006). Mesoporous nanotube aggregates obtained from hydrothermally treating TiO 2 with NaOH. Applied Surface Science, 253(4), 1898-1902. doi:10.1016/j.apsusc.2006.03.035 es_ES
dc.description.references Paramasivam, I., Jha, H., Liu, N., & Schmuki, P. (2012). A Review of Photocatalysis using Self-organized TiO2Nanotubes and Other Ordered Oxide Nanostructures. Small, 8(20), 3073-3103. doi:10.1002/smll.201200564 es_ES
dc.description.references D’Elia, D., Beauger, C., Hochepied, J.-F., Rigacci, A., Berger, M.-H., Keller, N., … Achard, P. (2011). Impact of three different TiO2 morphologies on hydrogen evolution by methanol assisted water splitting: Nanoparticles, nanotubes and aerogels. International Journal of Hydrogen Energy, 36(22), 14360-14373. doi:10.1016/j.ijhydene.2011.08.007 es_ES
dc.description.references Yu, L., Wang, Z., Shi, L., Yuan, S., Zhao, Y., Fang, J., & Deng, W. (2012). Photoelectrocatalytic performance of TiO2 nanoparticles incorporated TiO2 nanotube arrays. Applied Catalysis B: Environmental, 113-114, 318-325. doi:10.1016/j.apcatb.2011.12.004 es_ES
dc.description.references Wang, D., Zhang, X., Sun, P., Lu, S., Wang, L., Wang, C., & Liu, Y. (2014). Photoelectrochemical Water Splitting with Rutile TiO2 Nanowires Array: Synergistic Effect of Hydrogen Treatment and Surface Modification with Anatase Nanoparticles. Electrochimica Acta, 130, 290-295. doi:10.1016/j.electacta.2014.03.024 es_ES
dc.description.references Wolcott, A., Smith, W. A., Kuykendall, T. R., Zhao, Y., & Zhang, J. Z. (2009). Photoelectrochemical Water Splitting Using Dense and Aligned TiO2Nanorod Arrays. Small, 5(1), 104-111. doi:10.1002/smll.200800902 es_ES
dc.description.references Wang, G., Wang, H., Ling, Y., Tang, Y., Yang, X., Fitzmorris, R. C., … Li, Y. (2011). Hydrogen-Treated TiO2Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Letters, 11(7), 3026-3033. doi:10.1021/nl201766h es_ES
dc.description.references Macak, J. M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., & Schmuki, P. (2007). TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 11(1-2), 3-18. doi:10.1016/j.cossms.2007.08.004 es_ES
dc.description.references Muñoz, A. G. (2007). Semiconducting properties of self-organized TiO2 nanotubes. Electrochimica Acta, 52(12), 4167-4176. doi:10.1016/j.electacta.2006.11.035 es_ES
dc.description.references Pillai, P., Raja, K. S., & Misra, M. (2006). Electrochemical storage of hydrogen in nanotubular TiO2 arrays. Journal of Power Sources, 161(1), 524-530. doi:10.1016/j.jpowsour.2006.03.088 es_ES
dc.description.references Muñoz, A. G., Chen, Q., & Schmuki, P. (2006). Interfacial properties of self-organized TiO2 nanotubes studied by impedance spectroscopy. Journal of Solid State Electrochemistry, 11(8), 1077-1084. doi:10.1007/s10008-006-0241-9 es_ES
dc.description.references Tsuchiya, H., Macak, J. M., Ghicov, A., Räder, A. S., Taveira, L., & Schmuki, P. (2007). Characterization of electronic properties of TiO2 nanotube films. Corrosion Science, 49(1), 203-210. doi:10.1016/j.corsci.2006.05.009 es_ES
dc.description.references MOHAPATRA, S., MISRA, M., MAHAJAN, V., & RAJA, K. (2007). A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. Journal of Catalysis, 246(2), 362-369. doi:10.1016/j.jcat.2006.12.020 es_ES
dc.description.references Xiao, P., Liu, D., Garcia, B. B., Sepehri, S., Zhang, Y., & Cao, G. (2008). Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases. Sensors and Actuators B: Chemical, 134(2), 367-372. doi:10.1016/j.snb.2008.05.005 es_ES
dc.description.references Fabregat-Santiago, F., Barea, E. M., Bisquert, J., Mor, G. K., Shankar, K., & Grimes, C. A. (2008). High Carrier Density and Capacitance in TiO2Nanotube Arrays Induced by Electrochemical Doping. Journal of the American Chemical Society, 130(34), 11312-11316. doi:10.1021/ja710899q es_ES
dc.description.references Liu, Z., Pesic, B., Raja, K. S., Rangaraju, R. R., & Misra, M. (2009). Hydrogen generation under sunlight by self ordered TiO2 nanotube arrays. International Journal of Hydrogen Energy, 34(8), 3250-3257. doi:10.1016/j.ijhydene.2009.02.044 es_ES
dc.description.references Wang, D., Liu, Y., Yu, B., Zhou, F., & Liu, W. (2009). TiO2Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-Electrical/Catalytic Performance. Chemistry of Materials, 21(7), 1198-1206. doi:10.1021/cm802384y es_ES
dc.description.references Kang, T.-S., Smith, A. P., Taylor, B. E., & Durstock, M. F. (2009). Fabrication of Highly-Ordered TiO2Nanotube Arrays and Their Use in Dye-Sensitized Solar Cells. Nano Letters, 9(2), 601-606. doi:10.1021/nl802818d es_ES
dc.description.references Oyarzún, D. P., Córdova, R., Linarez Pérez, O. E., Muñoz, E., Henríquez, R., López Teijelo, M., & Gómez, H. (2010). Morphological, electrochemical and photoelectrochemical characterization of nanotubular TiO2 synthetized electrochemically from different electrolytes. Journal of Solid State Electrochemistry, 15(10), 2265-2275. doi:10.1007/s10008-010-1236-0 es_ES
dc.description.references Sánchez-Tovar, R., Lee, K., García-Antón, J., & Schmuki, P. (2013). Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynamic conditions. Electrochemistry Communications, 26, 1-4. doi:10.1016/j.elecom.2012.09.041 es_ES
dc.description.references Aïnouche, L., Hamadou, L., Kadri, A., Benbrahim, N., & Bradai, D. (2014). Interfacial Barrier Layer Properties of Three Generations of TiO2 Nanotube Arrays. Electrochimica Acta, 133, 597-609. doi:10.1016/j.electacta.2014.04.086 es_ES
dc.description.references Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of Titanium Oxide Nanotube. Langmuir, 14(12), 3160-3163. doi:10.1021/la9713816 es_ES
dc.description.references Jung, J. H., Kobayashi, H., van Bommel, K. J. C., Shinkai, S., & Shimizu, T. (2002). Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2Structures Using an Organogel Template. Chemistry of Materials, 14(4), 1445-1447. doi:10.1021/cm011625e es_ES
dc.description.references Bavykin, D. V., Friedrich, J. M., & Walsh, F. C. (2006). Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications. Advanced Materials, 18(21), 2807-2824. doi:10.1002/adma.200502696 es_ES
dc.description.references Bavykin, D. V., Parmon, V. N., Lapkin, A. A., & Walsh, F. C. (2004). The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry, 14(22), 3370. doi:10.1039/b406378c es_ES
dc.description.references Sánchez-Tovar, R., Paramasivam, I., Lee, K., & Schmuki, P. (2012). Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs. Journal of Materials Chemistry, 22(25), 12792. doi:10.1039/c2jm31246h es_ES
dc.description.references Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M. Y., & Aucouturier, M. (1999). Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis, 27(7), 629-637. doi:10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0 es_ES
dc.description.references Macák, J. M., Tsuchiya, H., & Schmuki, P. (2005). High-Aspect-Ratio TiO2Nanotubes by Anodization of Titanium. Angewandte Chemie International Edition, 44(14), 2100-2102. doi:10.1002/anie.200462459 es_ES
dc.description.references Sánchez-Tovar, R., Fernández-Domene, R. M., García-García, D. M., & García-Antón, J. (2015). Enhancement of photoelectrochemical activity for water splitting by controlling hydrodynamic conditions on titanium anodization. Journal of Power Sources, 286, 224-231. doi:10.1016/j.jpowsour.2015.03.174 es_ES
dc.description.references Sanchez-Tovar, R., Lee, K., Garcia-Anton, J., & Schmuki, P. (2012). Photoelectrochemical Poperties of Anodic TiO2 Nanosponge Layers. ECS Electrochemistry Letters, 2(3), H9-H11. doi:10.1149/2.005303eel es_ES
dc.description.references Borràs-Ferrís, J., Sánchez-Tovar, R., Blasco-Tamarit, E., Fernández-Domene, R. M., & García-Antón, J. (2016). Effect of Reynolds number and lithium cation insertion on titanium anodization. Electrochimica Acta, 196, 24-32. doi:10.1016/j.electacta.2016.02.160 es_ES
dc.description.references Ghicov, A., & Schmuki, P. (2009). Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chemical Communications, (20), 2791. doi:10.1039/b822726h es_ES
dc.description.references Roy, P., Berger, S., & Schmuki, P. (2011). TiO2 Nanotubes: Synthesis and Applications. Angewandte Chemie International Edition, 50(13), 2904-2939. doi:10.1002/anie.201001374 es_ES
dc.description.references Beranek, R., Tsuchiya, H., Sugishima, T., Macak, J. M., Taveira, L., Fujimoto, S., … Schmuki, P. (2005). Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. Applied Physics Letters, 87(24), 243114. doi:10.1063/1.2140085 es_ES
dc.description.references Tsui, L., Saito, M., Homma, T., & Zangari, G. (2015). Trap-state passivation of titania nanotubes by electrochemical doping for enhanced photoelectrochemical performance. Journal of Materials Chemistry A, 3(1), 360-367. doi:10.1039/c4ta05620e es_ES
dc.description.references Yang, J., Wang, X., Yang, X., Li, J., Zhang, X., & Zhao, J. (2015). Energy storage ability and anti-corrosion properties of Bi-doped TiO2 nanotube arrays. Electrochimica Acta, 169, 227-232. doi:10.1016/j.electacta.2015.04.076 es_ES
dc.description.references Momeni, M. M., Ghayeb, Y., & Ghonchegi, Z. (2015). Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceramics International, 41(7), 8735-8741. doi:10.1016/j.ceramint.2015.03.094 es_ES
dc.description.references Hahn, R., Ghicov, A., Tsuchiya, H., Macak, J. M., Muñoz, A. G., & Schmuki, P. (2007). Lithium-ion insertion in anodic TiO2nanotubes resulting in high electrochromic contrast. physica status solidi (a), 204(5), 1281-1285. doi:10.1002/pssa.200674310 es_ES
dc.description.references Macak, J. M., Gong, B. G., Hueppe, M., & Schmuki, P. (2007). Filling of TiO2 Nanotubes by Self-Doping and Electrodeposition. Advanced Materials, 19(19), 3027-3031. doi:10.1002/adma.200602549 es_ES
dc.description.references Shankar, K., Mor, G. K., Prakasam, H. E., Yoriya, S., Paulose, M., Varghese, O. K., & Grimes, C. A. (2007). Highly-ordered TiO2nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology, 18(6), 065707. doi:10.1088/0957-4484/18/6/065707 es_ES
dc.description.references Regonini, D., Bowen, C. R., Jaroenworaluck, A., & Stevens, R. (2013). A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Materials Science and Engineering: R: Reports, 74(12), 377-406. doi:10.1016/j.mser.2013.10.001 es_ES
dc.description.references Albu, S. P., Ghicov, A., Macak, J. M., Hahn, R., & Schmuki, P. (2007). Self-Organized, Free-Standing TiO2Nanotube Membrane for Flow-through Photocatalytic Applications. Nano Letters, 7(5), 1286-1289. doi:10.1021/nl070264k es_ES
dc.description.references Costa, L. L., & Prado, A. G. S. (2009). TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of indigo carmine dye. Journal of Photochemistry and Photobiology A: Chemistry, 201(1), 45-49. doi:10.1016/j.jphotochem.2008.09.014 es_ES
dc.description.references Hsiao, P.-T., Wang, K.-P., Cheng, C.-W., & Teng, H. (2007). Nanocrystalline anatase TiO2 derived from a titanate-directed route for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 188(1), 19-24. doi:10.1016/j.jphotochem.2006.11.013 es_ES
dc.description.references Qian, L., Du, Z.-L., Yang, S.-Y., & Jin, Z.-S. (2005). Raman study of titania nanotube by soft chemical process. Journal of Molecular Structure, 749(1-3), 103-107. doi:10.1016/j.molstruc.2005.04.002 es_ES
dc.description.references Nishanthi, S. T., Iyyapushpam, S., Sundarakannan, B., Subramanian, E., & Pathinettam Padiyan, D. (2014). Inter-relationship between extent of anatase crystalline phase and photocatalytic activity of TiO2 nanotubes prepared by anodization and annealing method. Separation and Purification Technology, 131, 102-107. doi:10.1016/j.seppur.2014.04.047 es_ES
dc.description.references Zhou, X., Shi, T., Wu, J., & Zhou, H. (2013). (001) Facet-exposed anatase-phase TiO2 nanotube hybrid reduced graphene oxide composite: Synthesis, characterization and application in photocatalytic degradation. Applied Surface Science, 287, 359-368. doi:10.1016/j.apsusc.2013.09.156 es_ES
dc.description.references Hou, X., Zhou, J., Huang, S., Ou-Yang, W., Pan, L., & Chen, X. (2017). Efficient quasi-mesoscopic perovskite solar cells using Li-doped hierarchical TiO2 as scaffold of scattered distribution. Chemical Engineering Journal, 330, 947-955. doi:10.1016/j.cej.2017.08.045 es_ES
dc.description.references Tsui, L., Homma, T., & Zangari, G. (2013). Photocurrent Conversion in Anodized TiO2 Nanotube Arrays: Effect of the Water Content in Anodizing Solutions. The Journal of Physical Chemistry C, 117(14), 6979-6989. doi:10.1021/jp400318n es_ES
dc.description.references Brug, G. J., van den Eeden, A. L. G., Sluyters-Rehbach, M., & Sluyters, J. H. (1984). The analysis of electrode impedances complicated by the presence of a constant phase element. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 176(1-2), 275-295. doi:10.1016/s0022-0728(84)80324-1 es_ES
dc.description.references Hirschorn, B., Orazem, M. E., Tribollet, B., Vivier, V., Frateur, I., & Musiani, M. (2010). Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochimica Acta, 55(21), 6218-6227. doi:10.1016/j.electacta.2009.10.065 es_ES
dc.description.references Palmas, S., Polcaro, A. M., Ruiz, J. R., Da Pozzo, A., Mascia, M., & Vacca, A. (2010). TiO2 photoanodes for electrically enhanced water splitting. International Journal of Hydrogen Energy, 35(13), 6561-6570. doi:10.1016/j.ijhydene.2010.04.039 es_ES
dc.description.references Pu, P., Cachet, H., & Sutter, E. M. M. (2010). Electrochemical impedance spectroscopy to study photo - induced effects on self-organized TiO2 nanotube arrays. Electrochimica Acta, 55(20), 5938-5946. doi:10.1016/j.electacta.2010.05.048 es_ES
dc.description.references Palmas, S., Da Pozzo, A., Mascia, M., Vacca, A., Ardu, A., Matarrese, R., & Nova, I. (2011). Effect of the preparation conditions on the performance of TiO 2 nanotube arrays obtained by electrochemical oxidation. International Journal of Hydrogen Energy, 36(15), 8894-8901. doi:10.1016/j.ijhydene.2011.04.105 es_ES
dc.description.references Tsui, L., & Zangari, G. (2014). Water content in the anodization electrolyte affects the electrochemical and electronic transport properties of TiO2 nanotubes: a study by electrochemical impedance spectroscopy. Electrochimica Acta, 121, 203-209. doi:10.1016/j.electacta.2013.12.163 es_ES
dc.description.references Radecka, M., Rekas, M., Trenczek-Zajac, A., & Zakrzewska, K. (2008). Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. Journal of Power Sources, 181(1), 46-55. doi:10.1016/j.jpowsour.2007.10.082 es_ES
dc.description.references Lu, X., Wang, G., Zhai, T., Yu, M., Gan, J., Tong, Y., & Li, Y. (2012). Hydrogenated TiO2 Nanotube Arrays for Supercapacitors. Nano Letters, 12(3), 1690-1696. doi:10.1021/nl300173j es_ES
dc.description.references Radecka, M., Wierzbicka, M., Komornicki, S., & Rekas, M. (2004). Influence of Cr on photoelectrochemical properties of TiO2 thin films. Physica B: Condensed Matter, 348(1-4), 160-168. doi:10.1016/j.physb.2003.11.086 es_ES
dc.description.references Van de Krol, R., Goossens, A., & Schoonman, J. (1999). Spatial Extent of Lithium Intercalation in Anatase TiO2. The Journal of Physical Chemistry B, 103(34), 7151-7159. doi:10.1021/jp9909964 es_ES
dc.description.references Wang, Z., Huang, B., Dai, Y., Qin, X., Zhang, X., Wang, P., … Yu, J. (2009). Highly Photocatalytic ZnO/In2O3 Heteronanostructures Synthesized by a Coprecipitation Method. The Journal of Physical Chemistry C, 113(11), 4612-4617. doi:10.1021/jp8107683 es_ES
dc.description.references Jiang, Z., Dai, X., & Middleton, H. (2011). Investigation on passivity of titanium under steady-state conditions in acidic solutions. Materials Chemistry and Physics, 126(3), 859-865. doi:10.1016/j.matchemphys.2010.12.028 es_ES
dc.description.references Kong, D.-S., Lu, W.-H., Feng, Y.-Y., Yu, Z.-Y., Wu, J.-X., Fan, W.-J., & Liu, H.-Y. (2009). Studying on the Point-Defect-Conductive Property of the Semiconducting Anodic Oxide Films on Titanium. Journal of The Electrochemical Society, 156(1), C39. doi:10.1149/1.3021008 es_ES
dc.description.references Sazou, D., Saltidou, K., & Pagitsas, M. (2012). Understanding the effect of bromides on the stability of titanium oxide films based on a point defect model. Electrochimica Acta, 76, 48-61. doi:10.1016/j.electacta.2012.04.158 es_ES
dc.description.references Roh, B., & Macdonald, D. D. (2007). Effect of oxygen vacancies in anodic titanium oxide films on the kinetics of the oxygen electrode reaction. Russian Journal of Electrochemistry, 43(2), 125-135. doi:10.1134/s1023193507020012 es_ES
dc.description.references Peng, H. (2008). First-principles study of native defects in rutile TiO2. Physics Letters A, 372(9), 1527-1530. doi:10.1016/j.physleta.2007.10.011 es_ES
dc.description.references CARP, O. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1-2), 33-177. doi:10.1016/j.progsolidstchem.2004.08.001 es_ES
dc.description.references KONIG, U. (1992). The examination of the influence of a space-charge layer on the formation kinetics of thin passive films by Schottky-Mott analysis. Solid State Ionics, 53-56, 255-264. doi:10.1016/0167-2738(92)90388-6 es_ES
dc.description.references Morgan, B. J., & Watson, G. W. (2009). Polaronic trapping of electrons and holes by native defects in anataseTiO2. Physical Review B, 80(23). doi:10.1103/physrevb.80.233102 es_ES
dc.description.references Irie, H., Watanabe, Y., & Hashimoto, K. (2003). Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNxPowders. The Journal of Physical Chemistry B, 107(23), 5483-5486. doi:10.1021/jp030133h es_ES
dc.description.references Kang, U., & Park, H. (2013). Lithium ion-inserted TiO2 nanotube array photoelectrocatalysts. Applied Catalysis B: Environmental, 140-141, 233-240. doi:10.1016/j.apcatb.2013.04.003 es_ES
dc.description.references Meekins, B. H., & Kamat, P. V. (2009). Got TiO2 Nanotubes? Lithium Ion Intercalation Can Boost Their Photoelectrochemical Performance. ACS Nano, 3(11), 3437-3446. doi:10.1021/nn900897r es_ES
dc.description.references Ke, S.-C., Wang, T.-C., Wong, M.-S., & Gopal, N. O. (2006). Low Temperature Kinetics and Energetics of the Electron and Hole Traps in Irradiated TiO2Nanoparticles as Revealed by EPR Spectroscopy. The Journal of Physical Chemistry B, 110(24), 11628-11634. doi:10.1021/jp0612578 es_ES
dc.description.references Berger, T., Sterrer, M., Diwald, O., Knözinger, E., Panayotov, D., Thompson, T. L., & Yates, J. T. (2005). Light-Induced Charge Separation in Anatase TiO2Particles. The Journal of Physical Chemistry B, 109(13), 6061-6068. doi:10.1021/jp0404293 es_ES
dc.description.references Sánchez-Tovar, R., Fernández-Domene, R. M., Martínez-Sánchez, A., Blasco-Tamarit, E., & García-Antón, J. (2015). Synergistic effect between hydrodynamic conditions during Ti anodization and acidic treatment on the photoelectric properties of TiO2 nanotubes. Journal of Catalysis, 330, 434-441. doi:10.1016/j.jcat.2015.08.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem