- -

Dry-sliding wear behavior of 3Y-TZP/Al2O3-NbC nanocomposites produced by conventional sintering and spark plasma sintering

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dry-sliding wear behavior of 3Y-TZP/Al2O3-NbC nanocomposites produced by conventional sintering and spark plasma sintering

Mostrar el registro completo del ítem

Salem, R.; Gutiérrez-González, C.; Borrell Tomás, MA.; Salvador Moya, MD.; Chinelatto, AL.; Chinelatto, AS.; Pallone, E. (2019). Dry-sliding wear behavior of 3Y-TZP/Al2O3-NbC nanocomposites produced by conventional sintering and spark plasma sintering. International Journal of Applied Ceramic Technology. 16(3):1265-1273. https://doi.org/10.1111/ijac.13151

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145876

Ficheros en el ítem

Metadatos del ítem

Título: Dry-sliding wear behavior of 3Y-TZP/Al2O3-NbC nanocomposites produced by conventional sintering and spark plasma sintering
Autor: Salem, Raphael Gutiérrez-González, C.F. Borrell Tomás, María Amparo Salvador Moya, Mª Dolores Chinelatto, Adilson L. Chinelatto, Adriana S.A. Pallone, Eliria
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] This work presents the initial results of the dry-sliding wear behavior of 3 mol% yttria-stabilized zirconia reinforced with 5 vol% alumina-niobium carbide (3Y-TZP/5 vol% Al2O3-NbC) nanocomposites sintered by conventional ...[+]
Palabras clave: Ceramic-matrix composite , Sliding wear , Surface analysis , Wear testing
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Applied Ceramic Technology. (issn: 1546-542X )
DOI: 10.1111/ijac.13151
Editorial:
Blackwell Publishing
Versión del editor: https://doi.org/10.1111/ijac.13151
Código del Proyecto:
info:eu-repo/grantAgreement/EACEA//EB15DM1542/
...[+]
info:eu-repo/grantAgreement/EACEA//EB15DM1542/
info:eu-repo/grantAgreement/FAPESP//2015%2F07319-8/
info:eu-repo/grantAgreement/CAPES//23038.009604%2F2013-12/
info:eu-repo/grantAgreement/Fundação Araucária, Brasil//810%2F2014/
info:eu-repo/grantAgreement/CAPES//A086%2F2013/
info:eu-repo/grantAgreement/MINECO//RYC-2016-20915/
[-]
Agradecimientos:
The authors acknowledge the Brazilian institutions CAPES-PVE (grant number 23038.009604/2013-12), FAPESP (grant number 2015/07319-8), Fundação Araucária (grant number 810/2014), European Union/Erasmus Mundus for doctorate ...[+]
Tipo: Artículo

References

Liu, H., Zhao, W., Ji, Y., Cui, J., Chu, Y., & Rao, P. (2017). Determination of fracture toughness of zirconia ceramics with different yttria concentrations by SEVNB method. Ceramics International, 43(13), 10572-10575. doi:10.1016/j.ceramint.2017.04.064

Ćorić, D., Majić Renjo, M., & Ćurković, L. (2017). Vickers indentation fracture toughness of Y-TZP dental ceramics. International Journal of Refractory Metals and Hard Materials, 64, 14-19. doi:10.1016/j.ijrmhm.2016.12.016

De Aza, A. H., Chevalier, J., Fantozzi, G., Schehl, M., & Torrecillas, R. (2002). Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials, 23(3), 937-945. doi:10.1016/s0142-9612(01)00206-x [+]
Liu, H., Zhao, W., Ji, Y., Cui, J., Chu, Y., & Rao, P. (2017). Determination of fracture toughness of zirconia ceramics with different yttria concentrations by SEVNB method. Ceramics International, 43(13), 10572-10575. doi:10.1016/j.ceramint.2017.04.064

Ćorić, D., Majić Renjo, M., & Ćurković, L. (2017). Vickers indentation fracture toughness of Y-TZP dental ceramics. International Journal of Refractory Metals and Hard Materials, 64, 14-19. doi:10.1016/j.ijrmhm.2016.12.016

De Aza, A. H., Chevalier, J., Fantozzi, G., Schehl, M., & Torrecillas, R. (2002). Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials, 23(3), 937-945. doi:10.1016/s0142-9612(01)00206-x

Aragón-Duarte, M. C., Nevarez-Rascón, A., Esparza-Ponce, H. E., Nevarez-Rascón, M. M., Talamantes, R. P., Ornelas, C., … Hurtado-Macías, A. (2017). Nanomechanical properties of zirconia- yttria and alumina zirconia- yttria biomedical ceramics, subjected to low temperature aging. Ceramics International, 43(5), 3931-3939. doi:10.1016/j.ceramint.2016.12.033

Balko, J., Csanádi, T., Sedlák, R., Vojtko, M., KovalĿíková, A., Koval, K., … Naughton-Duszová, A. (2017). Nanoindentation and tribology of VC, NbC and ZrC refractory carbides. Journal of the European Ceramic Society, 37(14), 4371-4377. doi:10.1016/j.jeurceramsoc.2017.04.064

Alecrim, L. R. R., Ferreira, J. A., Gutiérrez-González, C. F., Salvador, M. D., Borrell, A., & Pallone, E. M. J. A. (2017). Effect of reinforcement NbC phase on the mechanical properties of Al2O3-NbC nanocomposites obtained by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 64, 255-260. doi:10.1016/j.ijrmhm.2016.10.021

Alecrim, L. R. R., Ferreira, J. A., Gutiérrez-González, C. F., Salvador, M. D., Borrell, A., & Pallone, E. M. J. A. (2017). Sliding wear behavior of Al2O3-NbC composites obtained by conventional and nonconventional techniques. Tribology International, 110, 216-221. doi:10.1016/j.triboint.2017.02.028

Santos, C., Maeda, L. D., Cairo, C. A. A., & Acchar, W. (2008). Mechanical properties of hot-pressed ZrO2–NbC ceramic composites. International Journal of Refractory Metals and Hard Materials, 26(1), 14-18. doi:10.1016/j.ijrmhm.2007.01.008

Ünal, N., Kern, F., Öveçoğlu, M. L., & Gadow, R. (2011). Influence of WC particles on the microstructural and mechanical properties of 3mol% Y2O3 stabilized ZrO2 matrix composites produced by hot pressing. Journal of the European Ceramic Society, 31(13), 2267-2275. doi:10.1016/j.jeurceramsoc.2011.05.032

Sequeira, S., Fernandes, M. H., Neves, N., & Almeida, M. M. (2017). Development and characterization of zirconia–alumina composites for orthopedic implants. Ceramics International, 43(1), 693-703. doi:10.1016/j.ceramint.2016.09.216

Schmitt-Radloff, U., Kern, F., & Gadow, R. (2017). Wire-electrical discharge machinable alumina zirconia niobium carbide composites – Influence of NbC content. Journal of the European Ceramic Society, 37(15), 4861-4867. doi:10.1016/j.jeurceramsoc.2017.07.014

Akatsu, T., Nakanishi, S., Tanabe, Y., Wakai, F., & Yasuda, E. (2013). Toughening enhanced at elevated temperatures in an alumina/zirconia dual-phase matrix composite reinforced with silicon carbide whiskers. Journal of the European Ceramic Society, 33(15-16), 3157-3163. doi:10.1016/j.jeurceramsoc.2013.05.029

Lee, D.-J., Choi, H.-S., Jin, F.-L., & Park, S.-J. (2015). A study on mechanical properties and microstructure of tetragonal zirconia-based composites. Journal of Industrial and Engineering Chemistry, 27, 322-328. doi:10.1016/j.jiec.2015.01.008

Salem, R. E. P., Monteiro, F. R., Gutiérrez-González, C. F., Borrell, A., Salvador, M. D., Chinelatto, A. S. A., … Pallone, E. M. J. A. (2018). Effect of Al2O3-NbC nanopowder incorporation on the mechanical properties of 3Y-TZP/Al2O3-NbC nanocomposites obtained by conventional and spark plasma sintering. Ceramics International, 44(2), 2504-2509. doi:10.1016/j.ceramint.2017.10.235

Schmitt-Radloff, U., Kern, F., & Gadow, R. (2018). Spark plasma sintering and hot pressing of ZTA-NbC materials – A comparison of mechanical and electrical properties. Journal of the European Ceramic Society, 38(11), 4003-4013. doi:10.1016/j.jeurceramsoc.2018.04.022

Pędzich, Z., Haberko, K., Faryna, M., & Sztwiertnia, K. (2002). Interphase Boundary in Zirconia – Carbide Particulate Composites. Key Engineering Materials, 223, 221-226. doi:10.4028/www.scientific.net/kem.223.221

Acchar, W., Zollfrank, C., & Greil, P. (2004). Microstructure and mechanical properties of WC-Co reinforced with NbC. Materials Research, 7(3), 445-450. doi:10.1590/s1516-14392004000300012

Guillon, O., Gonzalez‐Julian, J., Dargatz, B., Kessel, T., Schierning, G., Räthel, J., & Herrmann, M. (2014). Field‐Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments. Advanced Engineering Materials, 16(7), 830-849. doi:10.1002/adem.201300409

Munir, Z. A., Anselmi-Tamburini, U., & Ohyanagi, M. (2006). The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. Journal of Materials Science, 41(3), 763-777. doi:10.1007/s10853-006-6555-2

Lu, K. (2008). Sintering of nanoceramics. International Materials Reviews, 53(1), 21-38. doi:10.1179/174328008x254358

Borrell, A., Fernández, A., Torrecillas, R., Córdoba, J. M., Avilés, M. A., & Gotor, F. J. (2010). Spark Plasma Sintering of Ultrafine TiCxN1−x Powders Synthesized by a Mechanically Induced Self-Sustaining Reaction. Journal of the American Ceramic Society, 93(8), 2252-2256. doi:10.1111/j.1551-2916.2010.03735.x

Bonache, V., Salvador, M. D., Fernández, A., & Borrell, A. (2011). Fabrication of full density near-nanostructured cemented carbides by combination of VC/Cr3C2 addition and consolidation by SPS and HIP technologies. International Journal of Refractory Metals and Hard Materials, 29(2), 202-208. doi:10.1016/j.ijrmhm.2010.10.007

Gutiérrez-Mora, F., Cano-Crespo, R., Rincón, A., Moreno, R., & Domínguez-Rodríguez, A. (2017). Friction and wear behavior of alumina-based graphene and CNFs composites. Journal of the European Ceramic Society, 37(12), 3805-3812. doi:10.1016/j.jeurceramsoc.2017.02.024

Wei, J., Lin, B., Wang, H., Sui, T., Yan, S., Zhao, F., … Fang, S. (2018). Friction and wear characteristics of carbon fiber reinforced silicon carbide ceramic matrix (Cf/SiC) composite and zirconia (ZrO2) ceramic under dry condition. Tribology International, 119, 45-54. doi:10.1016/j.triboint.2017.10.023

Fan, H., Hu, T., Zhang, Y., Fang, Y., Song, J., & Hu, L. (2014). Tribological properties of micro-textured surfaces of ZTA ceramic nanocomposites under the combined effect of test conditions and environments. Tribology International, 78, 134-141. doi:10.1016/j.triboint.2014.05.010

Gee, M., & Nunn, J. (2017). Real time measurement of wear and surface damage in the sliding wear of alumina. Wear, 376-377, 1866-1876. doi:10.1016/j.wear.2017.01.114

Wang, Y., Yang, Y., Zhao, Y., Tian, W., Bian, H., & He, J. (2009). Sliding wear behaviors of in situ alumina/aluminum titanate ceramic composites. Wear, 266(11-12), 1051-1057. doi:10.1016/j.wear.2008.11.006

Krell, A. (1996). Improved hardness and hierarchic influences on wear in submicron sintered alumina. Materials Science and Engineering: A, 209(1-2), 156-163. doi:10.1016/0921-5093(95)10155-1

Botta F, W. ., Tomasi, R., Pallone, E. M. J. ., & Yavari, A. . (2001). Nanostructured composites obtained by reactive milling. Scripta Materialia, 44(8-9), 1735-1740. doi:10.1016/s1359-6462(01)00789-8

Pallone, E. M. J. ., Trombini, V., Botta F, W. ., & Tomasi, R. (2003). Synthesis of Al2O3–NbC by reactive milling and production of nanocomposites. Journal of Materials Processing Technology, 143-144, 185-190. doi:10.1016/s0924-0136(03)00411-4

ASTM G99‐03 Standard test method for wear testing with a pin‐on‐disc apparatus ASTM Annual Book of Standards vol.03. West Conshohocken PA;2003.

Chen, W.-H., Lin, H.-T., Chen, J., Nayak, P. K., Lee, A. C., Lu, H.-H., & Huang, J.-L. (2016). Microstructure and wear behavior of spark plasma sintering sintered Al2O3/WC-based composite. International Journal of Refractory Metals and Hard Materials, 54, 279-283. doi:10.1016/j.ijrmhm.2015.07.030

Espinosa-Fernández, L., Borrell, A., Salvador, M. D., & Gutierrez-Gonzalez, C. F. (2013). Sliding wear behavior of WC–Co–Cr3C2–VC composites fabricated by conventional and non-conventional techniques. Wear, 307(1-2), 60-67. doi:10.1016/j.wear.2013.08.003

Bundschuh, W., & Gahr, K.-H. Z. (1991). Influence of porosity on friction and sliding wear of tetragonal zirconia polycrystal. Wear, 151(1), 175-191. doi:10.1016/0043-1648(91)90356-y

Bayer, R. J. (2004). Mechanical Wear Fundamentals and Testing, Revised and Expanded. doi:10.1201/9780203021798

Zum Gahr, K.-H. (1989). Sliding wear of ceramic-ceramic, ceramic-steel and steel-steel pairs in lubricated and unlubricated contact. Wear, 133(1), 1-22. doi:10.1016/0043-1648(89)90109-9

Kato, K., & Adachi, K. (2002). Wear of advanced ceramics. Wear, 253(11-12), 1097-1104. doi:10.1016/s0043-1648(02)00240-5

Pasaribu, H. R., Sloetjes, J. W., & Schipper, D. J. (2004). The transition of mild to severe wear of ceramics. Wear, 256(6), 585-591. doi:10.1016/j.wear.2003.10.025

Wang, S. W., Chen, L. D., Hirai, T., & Kang, Y. S. (1999). Journal of Materials Science Letters, 18(14), 1119-1121. doi:10.1023/a:1006684631127

Muñoz, S., & Anselmi-Tamburini, U. (2012). Parametric investigation of temperature distribution in field activated sintering apparatus. The International Journal of Advanced Manufacturing Technology, 65(1-4), 127-140. doi:10.1007/s00170-012-4155-7

Xiong, Y., Fu, Z. Y., Wang, H., Wang, Y. C., & Zhang, Q. J. (2005). Microstructure and IR transmittance of spark plasma sintering translucent AlN ceramics with CaF2 additive. Materials Science and Engineering: B, 123(1), 57-62. doi:10.1016/j.mseb.2005.06.023

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem