- -

Effect of an organotin catalyst on the physicochemical properties and biocompatibility of castor oil-based polyurethane/cellulose composites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of an organotin catalyst on the physicochemical properties and biocompatibility of castor oil-based polyurethane/cellulose composites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Villegas-Villalobos, S. es_ES
dc.contributor.author Diaz, L.E. es_ES
dc.contributor.author Vilariño, Guillermo es_ES
dc.contributor.author Vallés Lluch, Ana es_ES
dc.contributor.author Gómez-Tejedor, José-Antonio es_ES
dc.contributor.author Valero, M.F. es_ES
dc.date.accessioned 2020-06-11T03:33:49Z
dc.date.available 2020-06-11T03:33:49Z
dc.date.issued 2018-09-14 es_ES
dc.identifier.issn 0884-2914 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145999
dc.description.abstract [EN] Polyurethane/cellulose composites were synthesized from castor-oil-derived polyols and isophorone diisocyanate using dibutyltin dilaurate (DBTDL) as the catalyst. Materials were obtained by adding 2% cellulose in the form of either microcrystals (20 lm) or nanocrystals obtained by acid hydrolysis. The aim was to assess the effects of filler particle size and the use of a catalyst on the physicochemical properties and biological response of these composites. The addition of the catalyst was found to be essential to prevent filler aggregations and to enhance the tensile strength and elongation at break. The cellulose particle size influenced the composite properties, as its nanocrystals heighten hydrogen bond interactions between the filler surface and polyurethane domains, improving resistance to hydrolytic degradation. All hybrids retained cell viability, and the addition of DBTDL did not impair their biocompatibility. The samples were prone to calcification, which suggests that they could find application in the development of bioactive materials. es_ES
dc.description.sponsorship Universidad de La Sabana supported this work under Grant No. ING-176-2016. S.V.V. acknowledges the Universidad de La Sabana for the Teaching Assistant Scholarship for his master's studies. J.A.G.T. and A.V.L. acknowledge the support of the Spanish Ministry of Economy and Competitiveness (MINECO) through project DPI2015-65401-C3-2-R (including FEDER financial support). The authors acknowledge the assistance and advice of the Electron Microscopy Service of the UPV. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. es_ES
dc.language Inglés es_ES
dc.publisher Cambridge University Press (Materials Research Society) es_ES
dc.relation.ispartof Journal of Materials Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Polymer es_ES
dc.subject Composite es_ES
dc.subject Organometallic-catalyst es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Effect of an organotin catalyst on the physicochemical properties and biocompatibility of castor oil-based polyurethane/cellulose composites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1557/jmr.2018.286 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Universidad de La Sabana//ING-176-2016/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-65401-C3-2-R/ES/SOPORTES POLIMERICOS MULTIFUNCIONALES PARA CO-CULTIVO CELULAR INDIRECTO Y ESTIMULACION QUIMICA DESTINADOS A MIMETIZAR TEJIDO RENAL IN VITRO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Villegas-Villalobos, S.; Diaz, L.; Vilariño, G.; Vallés Lluch, A.; Gómez-Tejedor, J.; Valero, M. (2018). Effect of an organotin catalyst on the physicochemical properties and biocompatibility of castor oil-based polyurethane/cellulose composites. Journal of Materials Research. 33(17):2598-2611. https://doi.org/10.1557/jmr.2018.286 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1557/jmr.2018.286 es_ES
dc.description.upvformatpinicio 2598 es_ES
dc.description.upvformatpfin 2611 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 17 es_ES
dc.relation.pasarela S\368669 es_ES
dc.contributor.funder Universidad de La Sabana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Capadona, J. R., Van Den Berg, O., Capadona, L. A., Schroeter, M., Rowan, S. J., Tyler, D. J., & Weder, C. (2007). A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nature Nanotechnology, 2(12), 765-769. doi:10.1038/nnano.2007.379 es_ES
dc.description.references Kaushik, A., & Garg, A. (2013). Castor Oil Based Polyurethane Nanocomposites with Cellulose Nanocrystallites Fillers. Advanced Materials Research, 856, 309-313. doi:10.4028/www.scientific.net/amr.856.309 es_ES
dc.description.references Yilgör, I., Yilgör, E., & Wilkes, G. L. (2015). Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer, 58, A1-A36. doi:10.1016/j.polymer.2014.12.014 es_ES
dc.description.references Javni, I., Petrovi?, Z. S., Guo, A., & Fuller, R. (2000). Thermal stability of polyurethanes based on vegetable oils. Journal of Applied Polymer Science, 77(8), 1723-1734. doi:10.1002/1097-4628(20000822)77:8<1723::aid-app9>3.0.co;2-k es_ES
dc.description.references Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization. Progress in Organic Coatings, 80, 39-48. doi:10.1016/j.porgcoat.2014.11.017 es_ES
dc.description.references Girouard, N. M., Xu, S., Schueneman, G. T., Shofner, M. L., & Meredith, J. C. (2016). Site-Selective Modification of Cellulose Nanocrystals with Isophorone Diisocyanate and Formation of Polyurethane-CNC Composites. ACS Applied Materials & Interfaces, 8(2), 1458-1467. doi:10.1021/acsami.5b10723 es_ES
dc.description.references Saralegi, A., Gonzalez, M. L., Valea, A., Eceiza, A., & Corcuera, M. A. (2014). The role of cellulose nanocrystals in the improvement of the shape-memory properties of castor oil-based segmented thermoplastic polyurethanes. Composites Science and Technology, 92, 27-33. doi:10.1016/j.compscitech.2013.12.001 es_ES
dc.description.references Senich, G. A., & MacKnight, W. J. (1980). Fourier Transform Infrared Thermal Analysis of a Segmented Polyurethane. Macromolecules, 13(1), 106-110. doi:10.1021/ma60073a021 es_ES
dc.description.references Prisacariu, C. (2011). Structural studies on polyurethane elastomers. Polyurethane Elastomers, 23-60. doi:10.1007/978-3-7091-0514-6_2 es_ES
dc.description.references Oprea, S., Potolinca, V. O., Gradinariu, P., Joga, A., & Oprea, V. (2016). Synthesis, properties, and fungal degradation of castor-oil-based polyurethane composites with different cellulose contents. Cellulose, 23(4), 2515-2526. doi:10.1007/s10570-016-0972-4 es_ES
dc.description.references Cao, X., Dong, H., & Li, C. M. (2007). New Nanocomposite Materials Reinforced with Flax Cellulose Nanocrystals in Waterborne Polyurethane. Biomacromolecules, 8(3), 899-904. doi:10.1021/bm0610368 es_ES
dc.description.references Omonov, T. S., Kharraz, E., & Curtis, J. M. (2017). Camelina (Camelina Sativa) oil polyols as an alternative to Castor oil. Industrial Crops and Products, 107, 378-385. doi:10.1016/j.indcrop.2017.05.041 es_ES
dc.description.references Yakovlev, Y. V., Gagolkina, Z. O., Lobko, E. V., Khalakhan, I., & Klepko, V. V. (2017). The effect of catalyst addition on the structure, electrical and mechanical properties of the cross-linked polyurethane/carbon nanotube composites. Composites Science and Technology, 144, 208-214. doi:10.1016/j.compscitech.2017.03.034 es_ES
dc.description.references Tang, Z. G., Teoh, S. H., McFarlane, W., Poole-Warren, L. A., & Umezu, M. (2002). In vitro calcification of UHMWPE/PU composite membrane. Materials Science and Engineering: C, 20(1-2), 149-152. doi:10.1016/s0928-4931(02)00025-5 es_ES
dc.description.references Dave, V. J., & Patel, H. S. (2017). Synthesis and characterization of interpenetrating polymer networks from transesterified castor oil based polyurethane and polystyrene. Journal of Saudi Chemical Society, 21(1), 18-24. doi:10.1016/j.jscs.2013.08.001 es_ES
dc.description.references Lundin, J. G., Daniels, G. C., McGann, C. L., Stanbro, J., Watters, C., Stockelman, M., & Wynne, J. H. (2016). Multi-Functional Polyurethane Hydrogel Foams with Tunable Mechanical Properties for Wound Dressing Applications. Macromolecular Materials and Engineering, 302(3), 1600375. doi:10.1002/mame.201600375 es_ES
dc.description.references Oprea, S., Joga, A., Zorlescu, B., & Oprea, V. (2014). Effect of the hard segment structure on properties of resorcinol derivatives-based polyurethane elastomers. High Performance Polymers, 26(8), 859-866. doi:10.1177/0954008314533359 es_ES
dc.description.references Kumar, M. N. S., & Siddaramaiah. (2007). Thermo gravimetric analysis and morphological behavior of castor oil based polyurethane-polyester nonwoven fabric composites. Journal of Applied Polymer Science, 106(5), 3521-3528. doi:10.1002/app.26826 es_ES
dc.description.references Datta, J., & Głowińska, E. (2014). Effect of hydroxylated soybean oil and bio-based propanediol on the structure and thermal properties of synthesized bio-polyurethanes. Industrial Crops and Products, 61, 84-91. doi:10.1016/j.indcrop.2014.06.050 es_ES
dc.description.references Conejero-García, Á., Gimeno, H. R., Sáez, Y. M., Vilariño-Feltrer, G., Ortuño-Lizarán, I., & Vallés-Lluch, A. (2017). Correlating synthesis parameters with physicochemical properties of poly(glycerol sebacate). European Polymer Journal, 87, 406-419. doi:10.1016/j.eurpolymj.2017.01.001 es_ES
dc.description.references Fang, W., Arola, S., Malho, J.-M., Kontturi, E., Linder, M. B., & Laaksonen, P. (2016). Noncovalent Dispersion and Functionalization of Cellulose Nanocrystals with Proteins and Polysaccharides. Biomacromolecules, 17(4), 1458-1465. doi:10.1021/acs.biomac.6b00067 es_ES
dc.description.references Rudnik, E., Resiak, I., & Wojciechowski, C. (1998). Thermoanalytical investigations of polyurethanes for medical purposes. Thermochimica Acta, 320(1-2), 285-289. doi:10.1016/s0040-6031(98)00485-7 es_ES
dc.description.references Lundin, J. G., McGann, C. L., Daniels, G. C., Streifel, B. C., & Wynne, J. H. (2017). Hemostatic kaolin-polyurethane foam composites for multifunctional wound dressing applications. Materials Science and Engineering: C, 79, 702-709. doi:10.1016/j.msec.2017.05.084 es_ES
dc.description.references Meskinfam, M., Bertoldi, S., Albanese, N., Cerri, A., Tanzi, M. C., Imani, R., … Farè, S. (2018). Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Materials Science and Engineering: C, 82, 130-140. doi:10.1016/j.msec.2017.08.064 es_ES
dc.description.references Narine, S. S., Kong, X., Bouzidi, L., & Sporns, P. (2006). Physical Properties of Polyurethanes Produced from Polyols from Seed Oils: I. Elastomers. Journal of the American Oil Chemists’ Society, 84(1), 55-63. doi:10.1007/s11746-006-1006-4 es_ES
dc.description.references Alagi, P., Choi, Y. J., Seog, J., & Hong, S. C. (2016). Efficient and quantitative chemical transformation of vegetable oils to polyols through a thiol-ene reaction for thermoplastic polyurethanes. Industrial Crops and Products, 87, 78-88. doi:10.1016/j.indcrop.2016.04.027 es_ES
dc.description.references Benhamou, K., Kaddami, H., Magnin, A., Dufresne, A., & Ahmad, A. (2015). Bio-based polyurethane reinforced with cellulose nanofibers: A comprehensive investigation on the effect of interface. Carbohydrate Polymers, 122, 202-211. doi:10.1016/j.carbpol.2014.12.081 es_ES
dc.description.references Mondal, S., & Martin, D. (2012). Hydrolytic degradation of segmented polyurethane copolymers for biomedical applications. Polymer Degradation and Stability, 97(8), 1553-1561. doi:10.1016/j.polymdegradstab.2012.04.008 es_ES
dc.description.references Nguyen Dang, L., Le Hoang, S., Malin, M., Weisser, J., Walter, T., Schnabelrauch, M., & Seppälä, J. (2016). Synthesis and characterization of castor oil-segmented thermoplastic polyurethane with controlled mechanical properties. European Polymer Journal, 81, 129-137. doi:10.1016/j.eurpolymj.2016.05.024 es_ES
dc.description.references Bondeson, D., Mathew, A., & Oksman, K. (2006). Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose, 13(2), 171-180. doi:10.1007/s10570-006-9061-4 es_ES
dc.description.references Wik, V. M., Aranguren, M. I., & Mosiewicki, M. A. (2011). Castor oil-based polyurethanes containing cellulose nanocrystals. Polymer Engineering & Science, 51(7), 1389-1396. doi:10.1002/pen.21939 es_ES
dc.description.references Gao, Z., Peng, J., Zhong, T., Sun, J., Wang, X., & Yue, C. (2012). Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydrate Polymers, 87(3), 2068-2075. doi:10.1016/j.carbpol.2011.10.027 es_ES
dc.description.references Cherian, B. M., Leão, A. L., de Souza, S. F., Costa, L. M. M., de Olyveira, G. M., Kottaisamy, M., … Thomas, S. (2011). Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers, 86(4), 1790-1798. doi:10.1016/j.carbpol.2011.07.009 es_ES
dc.description.references Rocco, K. A., Maxfield, M. W., Best, C. A., Dean, E. W., & Breuer, C. K. (2014). In Vivo Applications of Electrospun Tissue-Engineered Vascular Grafts: A Review. Tissue Engineering Part B: Reviews, 20(6), 628-640. doi:10.1089/ten.teb.2014.0123 es_ES
dc.description.references Hocker, S. J. A., Hudson-Smith, N. V., Smith, P. T., Komatsu, C. H., Dickinson, L. R., Schniepp, H. C., & Kranbuehl, D. E. (2017). Graphene oxide reduces the hydrolytic degradation in polyamide-11. Polymer, 126, 248-258. doi:10.1016/j.polymer.2017.08.034 es_ES
dc.description.references Ryszkowska, J., Bil, M., Woźniak, P., Lewandowska, M., & Kurzydlowski, K. J. (2006). Influence of Catalyst Type on Biocompatibility of Polyurethanes. Materials Science Forum, 514-516, 887-891. doi:10.4028/www.scientific.net/msf.514-516.887 es_ES
dc.description.references Golomb, G., & Wagner, D. (1991). Development of a new in vitro model for studying implantable polyurethane calcification. Biomaterials, 12(4), 397-405. doi:10.1016/0142-9612(91)90008-x es_ES
dc.description.references Santamaria-Echart, A., Ugarte, L., García-Astrain, C., Arbelaiz, A., Corcuera, M. A., & Eceiza, A. (2016). Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites. Carbohydrate Polymers, 151, 1203-1209. doi:10.1016/j.carbpol.2016.06.069 es_ES
dc.description.references Gorna, K., & Gogolewski, S. (2003). Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. Journal of Biomedical Materials Research, 67A(3), 813-827. doi:10.1002/jbm.a.10148 es_ES
dc.description.references Boloori Zadeh, P., Corbett, S. C., & Nayeb-Hashemi, H. (2014). In-vitro calcification study of polyurethane heart valves. Materials Science and Engineering: C, 35, 335-340. doi:10.1016/j.msec.2013.11.015 es_ES
dc.description.references Patel, D. K., Biswas, A., & Maiti, P. (2016). Nanoparticle-induced phenomena in polyurethanes. Advances in Polyurethane Biomaterials, 171-194. doi:10.1016/b978-0-08-100614-6.00006-8 es_ES
dc.description.references Lin, S., Huang, J., Chang, P. R., Wei, S., Xu, Y., & Zhang, Q. (2013). Structure and mechanical properties of new biomass-based nanocomposite: Castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal. Carbohydrate Polymers, 95(1), 91-99. doi:10.1016/j.carbpol.2013.02.023 es_ES
dc.description.references Marzec, M., Kucińska-Lipka, J., Kalaszczyńska, I., & Janik, H. (2017). Development of polyurethanes for bone repair. Materials Science and Engineering: C, 80, 736-747. doi:10.1016/j.msec.2017.07.047 es_ES
dc.description.references Marcovich, N. E., Auad, M. L., Bellesi, N. E., Nutt, S. R., & Aranguren, M. I. (2006). Cellulose micro/nanocrystals reinforced polyurethane. Journal of Materials Research, 21(4), 870-881. doi:10.1557/jmr.2006.0105 es_ES
dc.description.references Chawla, J. S., & Amiji, M. M. (2002). Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. International Journal of Pharmaceutics, 249(1-2), 127-138. doi:10.1016/s0378-5173(02)00483-0 es_ES
dc.description.references Nabid, M. R., & Omrani, I. (2016). Facile preparation of pH-responsive polyurethane nanocarrier for oral delivery. Materials Science and Engineering: C, 69, 532-537. doi:10.1016/j.msec.2016.07.017 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem