- -

Effect of an organotin catalyst on the physicochemical properties and biocompatibility of castor oil-based polyurethane/cellulose composites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of an organotin catalyst on the physicochemical properties and biocompatibility of castor oil-based polyurethane/cellulose composites

Mostrar el registro completo del ítem

Villegas-Villalobos, S.; Diaz, L.; Vilariño, G.; Vallés Lluch, A.; Gómez-Tejedor, J.; Valero, M. (2018). Effect of an organotin catalyst on the physicochemical properties and biocompatibility of castor oil-based polyurethane/cellulose composites. Journal of Materials Research. 33(17):2598-2611. https://doi.org/10.1557/jmr.2018.286

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145999

Ficheros en el ítem

Metadatos del ítem

Título: Effect of an organotin catalyst on the physicochemical properties and biocompatibility of castor oil-based polyurethane/cellulose composites
Autor: Villegas-Villalobos, S. Diaz, L.E. Vilariño, Guillermo Vallés Lluch, Ana Gómez-Tejedor, José-Antonio Valero, M.F.
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] Polyurethane/cellulose composites were synthesized from castor-oil-derived polyols and isophorone diisocyanate using dibutyltin dilaurate (DBTDL) as the catalyst. Materials were obtained by adding 2% cellulose in the ...[+]
Palabras clave: Polymer , Composite , Organometallic-catalyst
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Materials Research. (issn: 0884-2914 )
DOI: 10.1557/jmr.2018.286
Editorial:
Cambridge University Press (Materials Research Society)
Versión del editor: https://doi.org/10.1557/jmr.2018.286
Código del Proyecto:
info:eu-repo/grantAgreement/Universidad de La Sabana//ING-176-2016/
info:eu-repo/grantAgreement/MINECO//DPI2015-65401-C3-2-R/ES/SOPORTES POLIMERICOS MULTIFUNCIONALES PARA CO-CULTIVO CELULAR INDIRECTO Y ESTIMULACION QUIMICA DESTINADOS A MIMETIZAR TEJIDO RENAL IN VITRO/
Agradecimientos:
Universidad de La Sabana supported this work under Grant No. ING-176-2016. S.V.V. acknowledges the Universidad de La Sabana for the Teaching Assistant Scholarship for his master's studies. J.A.G.T. and A.V.L. acknowledge ...[+]
Tipo: Artículo

References

Capadona, J. R., Van Den Berg, O., Capadona, L. A., Schroeter, M., Rowan, S. J., Tyler, D. J., & Weder, C. (2007). A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nature Nanotechnology, 2(12), 765-769. doi:10.1038/nnano.2007.379

Kaushik, A., & Garg, A. (2013). Castor Oil Based Polyurethane Nanocomposites with Cellulose Nanocrystallites Fillers. Advanced Materials Research, 856, 309-313. doi:10.4028/www.scientific.net/amr.856.309

Yilgör, I., Yilgör, E., & Wilkes, G. L. (2015). Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer, 58, A1-A36. doi:10.1016/j.polymer.2014.12.014 [+]
Capadona, J. R., Van Den Berg, O., Capadona, L. A., Schroeter, M., Rowan, S. J., Tyler, D. J., & Weder, C. (2007). A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nature Nanotechnology, 2(12), 765-769. doi:10.1038/nnano.2007.379

Kaushik, A., & Garg, A. (2013). Castor Oil Based Polyurethane Nanocomposites with Cellulose Nanocrystallites Fillers. Advanced Materials Research, 856, 309-313. doi:10.4028/www.scientific.net/amr.856.309

Yilgör, I., Yilgör, E., & Wilkes, G. L. (2015). Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer, 58, A1-A36. doi:10.1016/j.polymer.2014.12.014

Javni, I., Petrovi?, Z. S., Guo, A., & Fuller, R. (2000). Thermal stability of polyurethanes based on vegetable oils. Journal of Applied Polymer Science, 77(8), 1723-1734. doi:10.1002/1097-4628(20000822)77:8<1723::aid-app9>3.0.co;2-k

Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization. Progress in Organic Coatings, 80, 39-48. doi:10.1016/j.porgcoat.2014.11.017

Girouard, N. M., Xu, S., Schueneman, G. T., Shofner, M. L., & Meredith, J. C. (2016). Site-Selective Modification of Cellulose Nanocrystals with Isophorone Diisocyanate and Formation of Polyurethane-CNC Composites. ACS Applied Materials & Interfaces, 8(2), 1458-1467. doi:10.1021/acsami.5b10723

Saralegi, A., Gonzalez, M. L., Valea, A., Eceiza, A., & Corcuera, M. A. (2014). The role of cellulose nanocrystals in the improvement of the shape-memory properties of castor oil-based segmented thermoplastic polyurethanes. Composites Science and Technology, 92, 27-33. doi:10.1016/j.compscitech.2013.12.001

Senich, G. A., & MacKnight, W. J. (1980). Fourier Transform Infrared Thermal Analysis of a Segmented Polyurethane. Macromolecules, 13(1), 106-110. doi:10.1021/ma60073a021

Prisacariu, C. (2011). Structural studies on polyurethane elastomers. Polyurethane Elastomers, 23-60. doi:10.1007/978-3-7091-0514-6_2

Oprea, S., Potolinca, V. O., Gradinariu, P., Joga, A., & Oprea, V. (2016). Synthesis, properties, and fungal degradation of castor-oil-based polyurethane composites with different cellulose contents. Cellulose, 23(4), 2515-2526. doi:10.1007/s10570-016-0972-4

Cao, X., Dong, H., & Li, C. M. (2007). New Nanocomposite Materials Reinforced with Flax Cellulose Nanocrystals in Waterborne Polyurethane. Biomacromolecules, 8(3), 899-904. doi:10.1021/bm0610368

Omonov, T. S., Kharraz, E., & Curtis, J. M. (2017). Camelina (Camelina Sativa) oil polyols as an alternative to Castor oil. Industrial Crops and Products, 107, 378-385. doi:10.1016/j.indcrop.2017.05.041

Yakovlev, Y. V., Gagolkina, Z. O., Lobko, E. V., Khalakhan, I., & Klepko, V. V. (2017). The effect of catalyst addition on the structure, electrical and mechanical properties of the cross-linked polyurethane/carbon nanotube composites. Composites Science and Technology, 144, 208-214. doi:10.1016/j.compscitech.2017.03.034

Tang, Z. G., Teoh, S. H., McFarlane, W., Poole-Warren, L. A., & Umezu, M. (2002). In vitro calcification of UHMWPE/PU composite membrane. Materials Science and Engineering: C, 20(1-2), 149-152. doi:10.1016/s0928-4931(02)00025-5

Dave, V. J., & Patel, H. S. (2017). Synthesis and characterization of interpenetrating polymer networks from transesterified castor oil based polyurethane and polystyrene. Journal of Saudi Chemical Society, 21(1), 18-24. doi:10.1016/j.jscs.2013.08.001

Lundin, J. G., Daniels, G. C., McGann, C. L., Stanbro, J., Watters, C., Stockelman, M., & Wynne, J. H. (2016). Multi-Functional Polyurethane Hydrogel Foams with Tunable Mechanical Properties for Wound Dressing Applications. Macromolecular Materials and Engineering, 302(3), 1600375. doi:10.1002/mame.201600375

Oprea, S., Joga, A., Zorlescu, B., & Oprea, V. (2014). Effect of the hard segment structure on properties of resorcinol derivatives-based polyurethane elastomers. High Performance Polymers, 26(8), 859-866. doi:10.1177/0954008314533359

Kumar, M. N. S., & Siddaramaiah. (2007). Thermo gravimetric analysis and morphological behavior of castor oil based polyurethane-polyester nonwoven fabric composites. Journal of Applied Polymer Science, 106(5), 3521-3528. doi:10.1002/app.26826

Datta, J., & Głowińska, E. (2014). Effect of hydroxylated soybean oil and bio-based propanediol on the structure and thermal properties of synthesized bio-polyurethanes. Industrial Crops and Products, 61, 84-91. doi:10.1016/j.indcrop.2014.06.050

Conejero-García, Á., Gimeno, H. R., Sáez, Y. M., Vilariño-Feltrer, G., Ortuño-Lizarán, I., & Vallés-Lluch, A. (2017). Correlating synthesis parameters with physicochemical properties of poly(glycerol sebacate). European Polymer Journal, 87, 406-419. doi:10.1016/j.eurpolymj.2017.01.001

Fang, W., Arola, S., Malho, J.-M., Kontturi, E., Linder, M. B., & Laaksonen, P. (2016). Noncovalent Dispersion and Functionalization of Cellulose Nanocrystals with Proteins and Polysaccharides. Biomacromolecules, 17(4), 1458-1465. doi:10.1021/acs.biomac.6b00067

Rudnik, E., Resiak, I., & Wojciechowski, C. (1998). Thermoanalytical investigations of polyurethanes for medical purposes. Thermochimica Acta, 320(1-2), 285-289. doi:10.1016/s0040-6031(98)00485-7

Lundin, J. G., McGann, C. L., Daniels, G. C., Streifel, B. C., & Wynne, J. H. (2017). Hemostatic kaolin-polyurethane foam composites for multifunctional wound dressing applications. Materials Science and Engineering: C, 79, 702-709. doi:10.1016/j.msec.2017.05.084

Meskinfam, M., Bertoldi, S., Albanese, N., Cerri, A., Tanzi, M. C., Imani, R., … Farè, S. (2018). Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Materials Science and Engineering: C, 82, 130-140. doi:10.1016/j.msec.2017.08.064

Narine, S. S., Kong, X., Bouzidi, L., & Sporns, P. (2006). Physical Properties of Polyurethanes Produced from Polyols from Seed Oils: I. Elastomers. Journal of the American Oil Chemists’ Society, 84(1), 55-63. doi:10.1007/s11746-006-1006-4

Alagi, P., Choi, Y. J., Seog, J., & Hong, S. C. (2016). Efficient and quantitative chemical transformation of vegetable oils to polyols through a thiol-ene reaction for thermoplastic polyurethanes. Industrial Crops and Products, 87, 78-88. doi:10.1016/j.indcrop.2016.04.027

Benhamou, K., Kaddami, H., Magnin, A., Dufresne, A., & Ahmad, A. (2015). Bio-based polyurethane reinforced with cellulose nanofibers: A comprehensive investigation on the effect of interface. Carbohydrate Polymers, 122, 202-211. doi:10.1016/j.carbpol.2014.12.081

Mondal, S., & Martin, D. (2012). Hydrolytic degradation of segmented polyurethane copolymers for biomedical applications. Polymer Degradation and Stability, 97(8), 1553-1561. doi:10.1016/j.polymdegradstab.2012.04.008

Nguyen Dang, L., Le Hoang, S., Malin, M., Weisser, J., Walter, T., Schnabelrauch, M., & Seppälä, J. (2016). Synthesis and characterization of castor oil-segmented thermoplastic polyurethane with controlled mechanical properties. European Polymer Journal, 81, 129-137. doi:10.1016/j.eurpolymj.2016.05.024

Bondeson, D., Mathew, A., & Oksman, K. (2006). Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose, 13(2), 171-180. doi:10.1007/s10570-006-9061-4

Wik, V. M., Aranguren, M. I., & Mosiewicki, M. A. (2011). Castor oil-based polyurethanes containing cellulose nanocrystals. Polymer Engineering & Science, 51(7), 1389-1396. doi:10.1002/pen.21939

Gao, Z., Peng, J., Zhong, T., Sun, J., Wang, X., & Yue, C. (2012). Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydrate Polymers, 87(3), 2068-2075. doi:10.1016/j.carbpol.2011.10.027

Cherian, B. M., Leão, A. L., de Souza, S. F., Costa, L. M. M., de Olyveira, G. M., Kottaisamy, M., … Thomas, S. (2011). Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers, 86(4), 1790-1798. doi:10.1016/j.carbpol.2011.07.009

Rocco, K. A., Maxfield, M. W., Best, C. A., Dean, E. W., & Breuer, C. K. (2014). In Vivo Applications of Electrospun Tissue-Engineered Vascular Grafts: A Review. Tissue Engineering Part B: Reviews, 20(6), 628-640. doi:10.1089/ten.teb.2014.0123

Hocker, S. J. A., Hudson-Smith, N. V., Smith, P. T., Komatsu, C. H., Dickinson, L. R., Schniepp, H. C., & Kranbuehl, D. E. (2017). Graphene oxide reduces the hydrolytic degradation in polyamide-11. Polymer, 126, 248-258. doi:10.1016/j.polymer.2017.08.034

Ryszkowska, J., Bil, M., Woźniak, P., Lewandowska, M., & Kurzydlowski, K. J. (2006). Influence of Catalyst Type on Biocompatibility of Polyurethanes. Materials Science Forum, 514-516, 887-891. doi:10.4028/www.scientific.net/msf.514-516.887

Golomb, G., & Wagner, D. (1991). Development of a new in vitro model for studying implantable polyurethane calcification. Biomaterials, 12(4), 397-405. doi:10.1016/0142-9612(91)90008-x

Santamaria-Echart, A., Ugarte, L., García-Astrain, C., Arbelaiz, A., Corcuera, M. A., & Eceiza, A. (2016). Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites. Carbohydrate Polymers, 151, 1203-1209. doi:10.1016/j.carbpol.2016.06.069

Gorna, K., & Gogolewski, S. (2003). Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. Journal of Biomedical Materials Research, 67A(3), 813-827. doi:10.1002/jbm.a.10148

Boloori Zadeh, P., Corbett, S. C., & Nayeb-Hashemi, H. (2014). In-vitro calcification study of polyurethane heart valves. Materials Science and Engineering: C, 35, 335-340. doi:10.1016/j.msec.2013.11.015

Patel, D. K., Biswas, A., & Maiti, P. (2016). Nanoparticle-induced phenomena in polyurethanes. Advances in Polyurethane Biomaterials, 171-194. doi:10.1016/b978-0-08-100614-6.00006-8

Lin, S., Huang, J., Chang, P. R., Wei, S., Xu, Y., & Zhang, Q. (2013). Structure and mechanical properties of new biomass-based nanocomposite: Castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal. Carbohydrate Polymers, 95(1), 91-99. doi:10.1016/j.carbpol.2013.02.023

Marzec, M., Kucińska-Lipka, J., Kalaszczyńska, I., & Janik, H. (2017). Development of polyurethanes for bone repair. Materials Science and Engineering: C, 80, 736-747. doi:10.1016/j.msec.2017.07.047

Marcovich, N. E., Auad, M. L., Bellesi, N. E., Nutt, S. R., & Aranguren, M. I. (2006). Cellulose micro/nanocrystals reinforced polyurethane. Journal of Materials Research, 21(4), 870-881. doi:10.1557/jmr.2006.0105

Chawla, J. S., & Amiji, M. M. (2002). Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. International Journal of Pharmaceutics, 249(1-2), 127-138. doi:10.1016/s0378-5173(02)00483-0

Nabid, M. R., & Omrani, I. (2016). Facile preparation of pH-responsive polyurethane nanocarrier for oral delivery. Materials Science and Engineering: C, 69, 532-537. doi:10.1016/j.msec.2016.07.017

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem