Serrano, J. (2017). Imagining the Future of the Internal Combustion Engine for Ground Transport in the Current Context. Applied Sciences, 7(10), 1001. doi:10.3390/app7101001
Bermúdez, V., Serrano, J., Piqueras, P., & Sanchis, E. (2017). On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters. Applied Sciences, 7(3), 234. doi:10.3390/app7030234
Takeda, Y., Keiichi, N., & Keiichi, N. (1996). Emission Characteristics of Premixed Lean Diesel Combustion with Extremely Early Staged Fuel Injection. SAE Technical Paper Series. doi:10.4271/961163
[+]
Serrano, J. (2017). Imagining the Future of the Internal Combustion Engine for Ground Transport in the Current Context. Applied Sciences, 7(10), 1001. doi:10.3390/app7101001
Bermúdez, V., Serrano, J., Piqueras, P., & Sanchis, E. (2017). On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters. Applied Sciences, 7(3), 234. doi:10.3390/app7030234
Takeda, Y., Keiichi, N., & Keiichi, N. (1996). Emission Characteristics of Premixed Lean Diesel Combustion with Extremely Early Staged Fuel Injection. SAE Technical Paper Series. doi:10.4271/961163
Hasegawa, R., & Yanagihara, H. (2003). HCCI Combustion in DI Diesel Engine. SAE Technical Paper Series. doi:10.4271/2003-01-0745
Torregrosa, A. J., Broatch, A., García, A., & Mónico, L. F. (2013). Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines. Applied Energy, 104, 149-157. doi:10.1016/j.apenergy.2012.11.040
Torregrosa, A. J., Broatch, A., Novella, R., Gomez-Soriano, J., & Mónico, L. F. (2017). Impact of gasoline and Diesel blends on combustion noise and pollutant emissions in Premixed Charge Compression Ignition engines. Energy, 137, 58-68. doi:10.1016/j.energy.2017.07.010
Boyarski, N. J., & Reitz, R. D. (2006). Premixed Compression Ignition (PCI) Combustion with Modeling-Generated Piston Bowl Geometry in a Diesel Engine. SAE Technical Paper Series. doi:10.4271/2006-01-0198
Okude, K., Mori, K., Shiino, S., & Moriya, T. (2004). Premixed Compression Ignition (PCI) Combustion for Simultaneous Reduction of NOx and Soot in Diesel Engine. SAE Technical Paper Series. doi:10.4271/2004-01-1907
Wang, Z., Liu, H., & Reitz, R. D. (2017). Knocking combustion in spark-ignition engines. Progress in Energy and Combustion Science, 61, 78-112. doi:10.1016/j.pecs.2017.03.004
Hanson, R., Splitter, D., & Reitz, R. D. (2009). Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine with Gasoline for Low Emissions. SAE Technical Paper Series. doi:10.4271/2009-01-1442
Manente, V., Johansson, B., Tunestal, P., & Cannella, W. (2009). Effects of Different Type of Gasoline Fuels on Heavy Duty Partially Premixed Combustion. SAE International Journal of Engines, 2(2), 71-88. doi:10.4271/2009-01-2668
Lewander, M., Johansson, B., & Tunestal, P. (2011). Investigation and Comparison of Multi Cylinder Partially Premixed Combustion Characteristics for Diesel and Gasoline Fuels. SAE Technical Paper Series. doi:10.4271/2011-01-1811
Tribotte, P., Ravet, F., Dugue, V., Obernesser, P., Quechon, N., Benajes, J., … De Lima, D. (2012). Two Strokes Diesel Engine - Promising Solution to Reduce CO2 Emissions. Procedia - Social and Behavioral Sciences, 48, 2295-2314. doi:10.1016/j.sbspro.2012.06.1202
Laget, O., Ternel, C., Thiriot, J., Charmasson, S., Tribotté, P., & Vidal, F. (2013). Preliminary Design of a Two-Stroke Uniflow Diesel Engine for Passenger Car. SAE International Journal of Engines, 6(1), 596-613. doi:10.4271/2013-01-1719
Benajes, J., Novella, R., De Lima, D., Tribotté, P., Quechon, N., Obernesser, P., & Dugue, V. (2013). Analysis of the combustion process, pollutant emissions and efficiency of an innovative 2-stroke HSDI engine designed for automotive applications. Applied Thermal Engineering, 58(1-2), 181-193. doi:10.1016/j.applthermaleng.2013.03.050
Benajes, J., Molina, S., Novella, R., & De Lima, D. (2014). Implementation of the Partially Premixed Combustion concept in a 2-stroke HSDI diesel engine fueled with gasoline. Applied Energy, 122, 94-111. doi:10.1016/j.apenergy.2014.02.013
Pal, P., Keum, S., & Im, H. G. (2015). Assessment of flamelet versus multi-zone combustion modeling approaches for stratified-charge compression ignition engines. International Journal of Engine Research, 17(3), 280-290. doi:10.1177/1468087415571006
Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3-51. doi:10.1007/bf01061452
Wilcox, D. C. (2008). Formulation of the k-w Turbulence Model Revisited. AIAA Journal, 46(11), 2823-2838. doi:10.2514/1.36541
Chen, J. H., Hawkes, E. R., Sankaran, R., Mason, S. D., & Im, H. G. (2006). Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities. Combustion and Flame, 145(1-2), 128-144. doi:10.1016/j.combustflame.2005.09.017
Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035
Pillai, A. L., & Kurose, R. (2018). Numerical investigation of combustion noise in an open turbulent spray flame. Applied Acoustics, 133, 16-27. doi:10.1016/j.apacoust.2017.11.025
Misdariis, A., Vermorel, O., & Poinsot, T. (2015). LES of knocking in engines using dual heat transfer and two-step reduced schemes. Combustion and Flame, 162(11), 4304-4312. doi:10.1016/j.combustflame.2015.07.023
Broatch, A., Javier Lopez, J., García-Tíscar, J., & Gomez-Soriano, J. (2018). Experimental Analysis of Cyclical Dispersion in Compression-Ignited Versus Spark-Ignited Engines and Its Significance for Combustion Noise Numerical Modeling. Journal of Engineering for Gas Turbines and Power, 140(10). doi:10.1115/1.4040287
Torregrosa, A. J., Broatch, A., Gil, A., & Gomez-Soriano, J. (2018). Numerical approach for assessing combustion noise in compression-ignited Diesel engines. Applied Acoustics, 135, 91-100. doi:10.1016/j.apacoust.2018.02.006
Benajes, J., Broatch, A., Garcia, A., & Monico Muñoz, L. (2013). An Experimental Investigation of Diesel-Gasoline Blends Effects in a Direct-Injection Compression-Ignition Engine Operating in PCCI Conditions. SAE Technical Paper Series. doi:10.4271/2013-01-1676
Benajes, J., Novella, R., De Lima, D., & Tribotte, P. (2015). Investigation on Multiple Injection Strategies for Gasoline PPC Operation in a Newly Designed 2-Stroke HSDI Compression Ignition Engine. SAE International Journal of Engines, 8(2), 758-774. doi:10.4271/2015-01-0830
Benajes, J., García, A., Domenech, V., & Durrett, R. (2013). An investigation of partially premixed compression ignition combustion using gasoline and spark assistance. Applied Thermal Engineering, 52(2), 468-477. doi:10.1016/j.applthermaleng.2012.12.025
Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A., & Veynante, D. (2009). Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES. Combustion and Flame, 156(8), 1525-1541. doi:10.1016/j.combustflame.2009.04.007
Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A., & Veynante, D. (2007). Multi-Cycle LES Simulations of Flow and Combustion in a PFI SI 4-Valve Production Engine. SAE Technical Paper Series. doi:10.4271/2007-01-0151
Granet, V., Vermorel, O., Lacour, C., Enaux, B., Dugué, V., & Poinsot, T. (2012). Large-Eddy Simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine. Combustion and Flame, 159(4), 1562-1575. doi:10.1016/j.combustflame.2011.11.018
Cyclic dispersion in engine combustion—Introduction by the special issue editors. (2015). International Journal of Engine Research, 16(3), 255-259. doi:10.1177/1468087415572740
Klos, D., & Kokjohn, S. L. (2014). Investigation of the sources of combustion instability in low-temperature combustion engines using response surface models. International Journal of Engine Research, 16(3), 419-440. doi:10.1177/1468087414556135
Jia, M., Dempsey, A. B., Wang, H., Li, Y., & Reitz, R. D. (2014). Numerical simulation of cyclic variability in reactivity-controlled compression ignition combustion with a focus on the initial temperature at intake valve closing. International Journal of Engine Research, 16(3), 441-460. doi:10.1177/1468087414552088
Angelberger, C., Poinsot, T., & Delhay, B. (1997). Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations. SAE Technical Paper Series. doi:10.4271/972881
Senecal, P. K., Pomraning, E., Richards, K. J., Briggs, T. E., Choi, C. Y., Mcdavid, R. M., & Patterson, M. A. (2003). Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length using CFD and Parallel Detailed Chemistry. SAE Technical Paper Series. doi:10.4271/2003-01-1043
Babajimopoulos, A., Assanis, D. N., Flowers, D. L., Aceves, S. M., & Hessel, R. P. (2005). A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines. International Journal of Engine Research, 6(5), 497-512. doi:10.1243/146808705x30503
Pal, P., Probst, D., Pei, Y., Zhang, Y., Traver, M., Cleary, D., & Som, S. (2017). Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis. SAE International Journal of Fuels and Lubricants, 10(1), 56-68. doi:10.4271/2017-01-0578
Brakora, J., & Reitz, R. D. (2013). A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations. SAE Technical Paper Series. doi:10.4271/2013-01-1099
Kodavasal, J., Kolodziej, C. P., Ciatti, S. A., & Som, S. (2015). Computational Fluid Dynamics Simulation of Gasoline Compression Ignition. Journal of Energy Resources Technology, 137(3). doi:10.1115/1.4029963
Benajes, J., Novella, R., De Lima, D., & Thein, K. (2017). Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine. Applied Energy, 193, 515-530. doi:10.1016/j.apenergy.2017.02.044
Dukowicz, J. K. (1980). A particle-fluid numerical model for liquid sprays. Journal of Computational Physics, 35(2), 229-253. doi:10.1016/0021-9991(80)90087-x
Reitz, R. D., & Beale, J. C. (1999). MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL. Atomization and Sprays, 9(6), 623-650. doi:10.1615/atomizspr.v9.i6.40
PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009
Payri, R., Salvador, F. J., Gimeno, J., & Bracho, G. (2008). A NEW METHODOLOGY FOR CORRECTING THE SIGNAL CUMULATIVE PHENOMENON ON INJECTION RATE MEASUREMENTS. Experimental Techniques, 32(1), 46-49. doi:10.1111/j.1747-1567.2007.00188.x
Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021
Torregrosa, A. J., Broatch, A., García-Tíscar, J., & Gomez-Soriano, J. (2018). Modal decomposition of the unsteady flow field in compression-ignited combustion chambers. Combustion and Flame, 188, 469-482. doi:10.1016/j.combustflame.2017.10.007
Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2017). Impact of the injector design on the combustion noise of gasoline partially premixed combustion in a 2-stroke engine. Applied Thermal Engineering, 119, 530-540. doi:10.1016/j.applthermaleng.2017.03.081
[-]