- -

Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol

Mostrar el registro completo del ítem

Delgado-Muñoz, D.; Chieregato, A.; Soriano Rodríguez, MD.; Rodríguez-Aguado, E.; Ruiz-Rodríguez, L.; Rodriguez-Castellon, E.; López Nieto, JM. (2018). Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol. European Journal of Inorganic Chemistry. 10:1204-1211. https://doi.org/10.1002/ejic.201800059

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/146160

Ficheros en el ítem

Metadatos del ítem

Título: Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol
Autor: Delgado-Muñoz, Daniel Chieregato, Alessandro Soriano Rodríguez, Mª Dolores Rodríguez-Aguado, E. Ruiz-Rodríguez, Lidia Rodriguez-Castellon, E. López Nieto, José Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] A series of W-V-O catalysts with different m-WO3 and h-WO3 phase contents were hydrothermally synthesized by employing different tungsten, vanadium, and ammonium precursors and characterized by powder XRD, N-2 adsorption, ...[+]
Palabras clave: Heterogeneous catalysis , Oxydehydration , Hydrothermal synthesis , Vanadium , Tungsten , Oxidation
Derechos de uso: Reserva de todos los derechos
Fuente:
European Journal of Inorganic Chemistry. (issn: 1434-1948 )
DOI: 10.1002/ejic.201800059
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/ejic.201800059
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-3-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/
info:eu-repo/grantAgreement/MINECO//SVP-2014-068669/ES/SVP-2014-068669/
info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-1-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
The authors acknowledge the DGICYT in Spain, CTQ2015-68951-C3-1-R and CTQ2015-68951-C3-3-R. Authors from ITQ also thank Project SEV-2016-0683 for financial support. D. D. thanks MINECO and Severo Ochoa Excellence Program ...[+]
Tipo: Artículo

References

GUO, J.-D., & WHITTINGHAM, M. S. (1993). TUNGSTEN OXIDES AND BRONZES: SYNTHESIS, DIFFUSION AND REACTIVITY. International Journal of Modern Physics B, 07(23n24), 4145-4164. doi:10.1142/s0217979293003607

Long, H., Zeng, W., & Zhang, H. (2015). Synthesis of WO3 and its gas sensing: a review. Journal of Materials Science: Materials in Electronics, 26(7), 4698-4707. doi:10.1007/s10854-015-2896-4

Haldolaarachchige, N., Gibson, Q., Krizan, J., & Cava, R. J. (2014). Superconducting properties of theKxWO3tetragonal tungsten bronze and the superconducting phase diagram of the tungsten bronze family. Physical Review B, 89(10). doi:10.1103/physrevb.89.104520 [+]
GUO, J.-D., & WHITTINGHAM, M. S. (1993). TUNGSTEN OXIDES AND BRONZES: SYNTHESIS, DIFFUSION AND REACTIVITY. International Journal of Modern Physics B, 07(23n24), 4145-4164. doi:10.1142/s0217979293003607

Long, H., Zeng, W., & Zhang, H. (2015). Synthesis of WO3 and its gas sensing: a review. Journal of Materials Science: Materials in Electronics, 26(7), 4698-4707. doi:10.1007/s10854-015-2896-4

Haldolaarachchige, N., Gibson, Q., Krizan, J., & Cava, R. J. (2014). Superconducting properties of theKxWO3tetragonal tungsten bronze and the superconducting phase diagram of the tungsten bronze family. Physical Review B, 89(10). doi:10.1103/physrevb.89.104520

Huang, Z.-F., Song, J., Pan, L., Zhang, X., Wang, L., & Zou, J.-J. (2015). Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Advanced Materials, 27(36), 5309-5327. doi:10.1002/adma.201501217

Maiyalagan, T., & Viswanathan, B. (2008). Catalytic activity of platinum/tungsten oxide nanorod electrodes towards electro-oxidation of methanol. Journal of Power Sources, 175(2), 789-793. doi:10.1016/j.jpowsour.2007.09.106

Weber, M. F., Bevolo, A. J., Shanks, H. R., & Danielson, G. C. (1981). Electrocatalytic Activity of Cubic Sodium Tungsten Bronze: I. Effects of Platinum Doping, Anodization, and Platinum Pre‐Electrolysis of the Electrolyte. Journal of The Electrochemical Society, 128(5), 996-1003. doi:10.1149/1.2127588

Wickman, B., Wesselmark, M., Lagergren, C., & Lindbergh, G. (2011). Tungsten oxide in polymer electrolyte fuel cell electrodes—A thin-film model electrode study. Electrochimica Acta, 56(25), 9496-9503. doi:10.1016/j.electacta.2011.08.046

Dey, K. R., Debnath, T., Rüscher, C. H., Sundberg, M., & Hussain, A. (2010). Synthesis and characterization of niobium doped hexagonal tungsten bronze in the systems, CsxNbyW1−yO3. Journal of Materials Science, 46(5), 1388-1395. doi:10.1007/s10853-010-4932-3

Zhang, Z., Liu, J., Gu, J., Su, L., & Cheng, L. (2014). An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ. Sci., 7(8), 2535-2558. doi:10.1039/c3ee43886d

Murawska, M., Cox, J. A., & Miecznikowski, K. (2014). PtIr–WO3 nanostructured alloy for electrocatalytic oxidation of ethylene glycol and ethanol. Journal of Solid State Electrochemistry, 18(11), 3003-3010. doi:10.1007/s10008-014-2493-0

Li, X. P., Xiang, X. D., Yang, H. Y., Wang, X. J., Tan, C. L., & Li, W. S. (2013). Hydrogen Tungsten Bronze-Supported Platinum as Electrocatalyst for Methanol Oxidation. Fuel Cells, 13(2), 314-318. doi:10.1002/fuce.201000131

Kulesza, P. J., Pieta, I. S., Rutkowska, I. A., Wadas, A., Marks, D., Klak, K., … Cox, J. A. (2013). Electrocatalytic oxidation of small organic molecules in acid medium: Enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides. Electrochimica Acta, 110, 474-483. doi:10.1016/j.electacta.2013.06.052

BROYDE, B. (1968). Tungsten bronze fuel cell catalysts. Journal of Catalysis, 10(1), 13-18. doi:10.1016/0021-9517(68)90217-0

Li, G., Guo, C., Yan, M., & Liu, S. (2016). Cs x WO 3 nanorods: Realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region. Applied Catalysis B: Environmental, 183, 142-148. doi:10.1016/j.apcatb.2015.10.039

Xi, Y., Chen, Z., Gan Wei Kiat, V., Huang, L., & Cheng, H. (2015). On the mechanism of catalytic hydrogenation of thiophene on hydrogen tungsten bronze. Physical Chemistry Chemical Physics, 17(15), 9698-9705. doi:10.1039/c4cp05298f

Liu, Y., Shrestha, S., & Mustain, W. E. (2012). Synthesis of Nanosize Tungsten Oxide and Its Evaluation as an Electrocatalyst Support for Oxygen Reduction in Acid Media. ACS Catalysis, 2(3), 456-463. doi:10.1021/cs200657w

Song, J., Huang, Z.-F., Pan, L., Zou, J.-J., Zhang, X., & Wang, L. (2015). Oxygen-Deficient Tungsten Oxide as Versatile and Efficient Hydrogenation Catalyst. ACS Catalysis, 5(11), 6594-6599. doi:10.1021/acscatal.5b01522

Okumura, K., Ishida, S., Takahata, R., & Katada, N. (2013). Structure and catalysis of layered Nb–W oxide constructed by the self-assembly of nanofibers. Catalysis Today, 204, 197-203. doi:10.1016/j.cattod.2012.06.034

Yue, C., Zhu, X., Rigutto, M., & Hensen, E. (2015). Acid catalytic properties of reduced tungsten and niobium-tungsten oxides. Applied Catalysis B: Environmental, 163, 370-381. doi:10.1016/j.apcatb.2014.08.008

Botella, P., Solsona, B., García-González, E., González-Calbet, J. M., & López Nieto, J. M. (2007). The hydrothermal synthesis of tetragonal tungsten bronze-based catalysts for the selective oxidation of hydrocarbons. Chemical Communications, (47), 5040. doi:10.1039/b711228a

Soriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622e

Chieregato, A., Soriano, M. D., García-González, E., Puglia, G., Basile, F., Concepción, P., … Cavani, F. (2014). Multielement Crystalline and Pseudocrystalline Oxides as Efficient Catalysts for the Direct Transformation of Glycerol into Acrylic Acid. ChemSusChem, 8(2), 398-406. doi:10.1002/cssc.201402721

Soriano, M. D., Chieregato, A., Zamora, S., Basile, F., Cavani, F., & López Nieto, J. M. (2015). Promoted Hexagonal Tungsten Bronzes as Selective Catalysts in the Aerobic Transformation of Alcohols: Glycerol and Methanol. Topics in Catalysis, 59(2-4), 178-185. doi:10.1007/s11244-015-0440-7

Nagy, D., Nagy, D., Szilágyi, I. M., & Fan, X. (2016). Effect of the morphology and phases of WO3 nanocrystals on their photocatalytic efficiency. RSC Advances, 6(40), 33743-33754. doi:10.1039/c5ra26582g

Lin, S., Guo, Y., Li, X., & Liu, Y. (2015). Glycine acid-assisted green hydrothermal synthesis and controlled growth of WO3 nanowires. Materials Letters, 152, 102-104. doi:10.1016/j.matlet.2015.03.099

Miao, B., Zeng, W., Hussain, S., Mei, Q., Xu, S., Zhang, H., … Li, T. (2015). Large scale hydrothermal synthesis of monodisperse hexagonal WO3 nanowire and the growth mechanism. Materials Letters, 147, 12-15. doi:10.1016/j.matlet.2015.02.020

Marques, A. C., Santos, L., Costa, M. N., Dantas, J. M., Duarte, P., Gonçalves, A., … Fortunato, E. (2015). Office Paper Platform for Bioelectrochromic Detection of Electrochemically Active Bacteria using Tungsten Trioxide Nanoprobes. Scientific Reports, 5(1). doi:10.1038/srep09910

Magnéli, A., Virtanen, A. I., Olsen, J., Virtanen, A. I., & Sörensen, N. A. (1953). Studies on the Hexagonal Tungsten Bronzes of Potassium, Rubidium, and Cesium. Acta Chemica Scandinavica, 7, 315-324. doi:10.3891/acta.chem.scand.07-0315

C. D. Vanderpool M. B. MacInnis J. C. Patton US Patent 1976

Sanchez Sanchez, M., Girgsdies, F., Jastak, M., Kube, P., Schlögl, R., & Trunschke, A. (2012). Aiding the Self-Assembly of Supramolecular Polyoxometalates under Hydrothermal Conditions To Give Precursors of Complex Functional Oxides. Angewandte Chemie International Edition, 51(29), 7194-7197. doi:10.1002/anie.201200746

Sanchez Sanchez, M., Girgsdies, F., Jastak, M., Kube, P., Schlögl, R., & Trunschke, A. (2012). Aiding the Self-Assembly of Supramolecular Polyoxometalates under Hydrothermal Conditions To Give Precursors of Complex Functional Oxides. Angewandte Chemie, 124(29), 7306-7309. doi:10.1002/ange.201200746

García-González, E., Soriano, M. D., Urones-Garrote, E., & López Nieto, J. M. (2014). On the origin of the spontaneous formation of nanocavities in hexagonal bronzes (W,V)O3. Dalton Trans., 43(39), 14644-14652. doi:10.1039/c4dt01465k

Szilágyi, I. M., Madarász, J., Pokol, G., Király, P., Tárkányi, G., Saukko, S., … Varga-Josepovits, K. (2008). Stability and Controlled Composition of Hexagonal WO3. Chemistry of Materials, 20(12), 4116-4125. doi:10.1021/cm800668x

Guo, C., Yin, S., Zhang, P., Yan, M., Adachi, K., Chonan, T., & Sato, T. (2010). Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process. Journal of Materials Chemistry, 20(38), 8227. doi:10.1039/c0jm01972k

Botella, P., García-González, E., López Nieto, J. M., & González-Calbet, J. M. (2005). MoVTeNbO multifunctional catalysts: Correlation between constituent crystalline phases and catalytic performance. Solid State Sciences, 7(5), 507-519. doi:10.1016/j.solidstatesciences.2005.01.012

Kong, Y., Sun, H., Zhao, X., Gao, B., & Fan, W. (2015). Fabrication of hexagonal/cubic tungsten oxide homojunction with improved photocatalytic activity. Applied Catalysis A: General, 505, 447-455. doi:10.1016/j.apcata.2015.05.015

Botella, P., Solsona, B., López Nieto, J. M., Concepción, P., Jordá, J. L., & Doménech-Carbó, M. T. (2010). Mo–W-containing tetragonal tungsten bronzes through isomorphic substitution of molybdenum by tungsten. Catalysis Today, 158(1-2), 162-169. doi:10.1016/j.cattod.2010.05.024

Griffith, W. P., & Lesniak, P. J. B. (1969). Raman studies on species in aqueous solutions. Part III. Vanadates, molybdates, and tungstates. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1066. doi:10.1039/j19690001066

Zheng, Z., Yan, B., Zhang, J., You, Y., Lim, C. T., Shen, Z., & Yu, T. (2008). Potassium Tungsten Bronze Nanowires: Polarized Micro-Raman Scattering of Individual Nanowires and Electron Field Emission from Nanowire Films. Advanced Materials, 20(2), 352-356. doi:10.1002/adma.200701514

Sanchez, C., Livage, J., & Lucazeau, G. (1982). Infrared and Raman study of amorphous V2O5. Journal of Raman Spectroscopy, 12(1), 68-72. doi:10.1002/jrs.1250120110

Szilágyi, I. M., Madarász, J., Pokol, G., Hange, F., Szalontai, G., Varga-Josepovits, K., & Tóth, A. L. (2009). The effect of K+ ion exchange on the structure and thermal reduction of hexagonal ammonium tungsten bronze. Journal of Thermal Analysis and Calorimetry, 97(1), 11-18. doi:10.1007/s10973-008-9752-1

Fouad, N. E., Nohman, A. K. ., Mohamed, M. A., & Zaki, M. I. (2000). Characterization of ammonium tungsten bronze [(NH4)0.33WO3] in the thermal decomposition course of ammonium paratungstate. Journal of Analytical and Applied Pyrolysis, 56(1), 23-31. doi:10.1016/s0165-2370(00)00084-x

Huo, L., Zhao, H., Mauvy, F., Fourcade, S., Labrugere, C., Pouchard, M., & Grenier, J.-C. (2004). Synthesis and mixed conductivity of ammonium tungsten bronze with tunneling structures. Solid State Sciences, 6(7), 679-688. doi:10.1016/j.solidstatesciences.2004.03.036

Perra, D., Drenchev, N., Chakarova, K., Cutrufello, M. G., & Hadjiivanov, K. (2014). Remarkable acid strength of ammonium ions in zeolites: FTIR study of low-temperature CO adsorption on NH4FER. RSC Adv., 4(99), 56183-56187. doi:10.1039/c4ra12504e

Oshihara, K., Hisano, T., & Ueda, W. (2001). Topics in Catalysis, 15(2/4), 153-160. doi:10.1023/a:1016630307377

Sohn, J. R., & Park, M. Y. (1998). Characterization of Zirconia-Supported Tungsten Oxide Catalyst. Langmuir, 14(21), 6140-6145. doi:10.1021/la980222z

Wachs, I. E., & Routray, K. (2012). Catalysis Science of Bulk Mixed Oxides. ACS Catalysis, 2(6), 1235-1246. doi:10.1021/cs2005482

Tatibouët, J. M. (1997). Methanol oxidation as a catalytic surface probe. Applied Catalysis A: General, 148(2), 213-252. doi:10.1016/s0926-860x(96)00236-0

Badlani, M., & Wachs, I. E. (2001). Catalysis Letters, 75(3/4), 137-149. doi:10.1023/a:1016715520904

Chieregato, A., Soriano, M. D., Basile, F., Liosi, G., Zamora, S., Concepción, P., … López Nieto, J. M. (2014). One-pot glycerol oxidehydration to acrylic acid on multifunctional catalysts: Focus on the influence of the reaction parameters in respect to the catalytic performance. Applied Catalysis B: Environmental, 150-151, 37-46. doi:10.1016/j.apcatb.2013.11.045

Omata, K., Matsumoto, K., Murayama, T., & Ueda, W. (2016). Direct oxidative transformation of glycerol to acrylic acid over Nb-based complex metal oxide catalysts. Catalysis Today, 259, 205-212. doi:10.1016/j.cattod.2015.07.016

Chieregato, A., Basile, F., Concepción, P., Guidetti, S., Liosi, G., Soriano, M. D., … Nieto, J. M. L. (2012). Glycerol oxidehydration into acrolein and acrylic acid over W–V–Nb–O bronzes with hexagonal structure. Catalysis Today, 197(1), 58-65. doi:10.1016/j.cattod.2012.06.024

Yun, Y. S., Lee, K. R., Park, H., Kim, T. Y., Yun, D., Han, J. W., & Yi, J. (2014). Rational Design of a Bifunctional Catalyst for the Oxydehydration of Glycerol: A Combined Theoretical and Experimental Study. ACS Catalysis, 5(1), 82-94. doi:10.1021/cs501307v

Katryniok, B., Bonnotte, T., Dumeignil, F., & Paul, S. (2016). Production of Bioacrylic Acid. Chemicals and Fuels from Bio-Based Building Blocks, 217-244. doi:10.1002/9783527698202.ch9

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem