- -

Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol

Show simple item record

Files in this item

dc.contributor.author Delgado-Muñoz, Daniel es_ES
dc.contributor.author Chieregato, Alessandro es_ES
dc.contributor.author Soriano Rodríguez, Mª Dolores es_ES
dc.contributor.author Rodríguez-Aguado, E. es_ES
dc.contributor.author Ruiz-Rodríguez, Lidia es_ES
dc.contributor.author Rodriguez-Castellon, E. es_ES
dc.contributor.author López Nieto, José Manuel es_ES
dc.date.accessioned 2020-06-12T03:33:07Z
dc.date.available 2020-06-12T03:33:07Z
dc.date.issued 2018-03-14 es_ES
dc.identifier.issn 1434-1948 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146160
dc.description.abstract [EN] A series of W-V-O catalysts with different m-WO3 and h-WO3 phase contents were hydrothermally synthesized by employing different tungsten, vanadium, and ammonium precursors and characterized by powder XRD, N-2 adsorption, SEM, X-ray energy-dispersive spectroscopy, thermogravimetric analysis, Raman and FTIR spectroscopy, NH3 temperature programmed desorption, H-2 temperature-programmed reduction, and XPS. Finally, the acid/redox properties were analyzed by using aerobic transformation of methanol as a characterization reaction. A correlation between phase composition as well as acid and redox properties was observed, which were correlated to the catalytic performance of the title materials in a one-pot oxydehydration reaction of glycerol. The hexagonal tungsten bronze (h-WO3) phase shows a significantly higher concentration of acid sites than monoclinic m-WO3, so that the acid properties of W-V-O oxides are directly related to the presence of h-WO3 crystals. The presence of a higher concentration of acid sites in V-containing h-WO3 crystals is a key factor to achieve high selectivity to both acrolein and acrylic acid during one-pot glycerol oxydehydration. Also, V sites in h-WO3 show higher selectivity in the consecutive reaction (partial oxidation of acrolein to acrylic acid), while V sites in the m-WO3 phase fundamentally lead to the formation of carbon oxides. es_ES
dc.description.sponsorship The authors acknowledge the DGICYT in Spain, CTQ2015-68951-C3-1-R and CTQ2015-68951-C3-3-R. Authors from ITQ also thank Project SEV-2016-0683 for financial support. D. D. thanks MINECO and Severo Ochoa Excellence Program for his fellowship (SVP-2014-068669). The research group of Prof. Fabrizio Cavani (University of Bologna, Italy)and Consorzio INSTM (Firenze) are gratefully acknowledged for a PhD grant to A. C. Authors also thank the Electron Microscopy Service of Universitat Politecnica de Valencia for their support. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-3-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/ es_ES
dc.relation info:eu-repo/grantAgreement/MINECO//SVP-2014-068669/ES/SVP-2014-068669/ es_ES
dc.relation info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-1-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/ es_ES
dc.relation MINECO/SEV-2016-0683 es_ES
dc.relation.ispartof European Journal of Inorganic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Oxydehydration es_ES
dc.subject Hydrothermal synthesis es_ES
dc.subject Vanadium es_ES
dc.subject Tungsten es_ES
dc.subject Oxidation es_ES
dc.title Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/ejic.201800059 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Delgado-Muñoz, D.; Chieregato, A.; Soriano Rodríguez, MD.; Rodríguez-Aguado, E.; Ruiz-Rodríguez, L.; Rodriguez-Castellon, E.; López Nieto, JM. (2018). Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol. European Journal of Inorganic Chemistry. 10:1204-1211. https://doi.org/10.1002/ejic.201800059 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/ejic.201800059 es_ES
dc.description.upvformatpinicio 1204 es_ES
dc.description.upvformatpfin 1211 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.relation.pasarela S\376756 es_ES
dc.contributor.funder Università di Bologna es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Italia es_ES
dc.relation.references GUO, J.-D., & WHITTINGHAM, M. S. (1993). TUNGSTEN OXIDES AND BRONZES: SYNTHESIS, DIFFUSION AND REACTIVITY. International Journal of Modern Physics B, 07(23n24), 4145-4164. doi:10.1142/s0217979293003607 es_ES
dc.relation.references Long, H., Zeng, W., & Zhang, H. (2015). Synthesis of WO3 and its gas sensing: a review. Journal of Materials Science: Materials in Electronics, 26(7), 4698-4707. doi:10.1007/s10854-015-2896-4 es_ES
dc.relation.references Haldolaarachchige, N., Gibson, Q., Krizan, J., & Cava, R. J. (2014). Superconducting properties of theKxWO3tetragonal tungsten bronze and the superconducting phase diagram of the tungsten bronze family. Physical Review B, 89(10). doi:10.1103/physrevb.89.104520 es_ES
dc.relation.references Huang, Z.-F., Song, J., Pan, L., Zhang, X., Wang, L., & Zou, J.-J. (2015). Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Advanced Materials, 27(36), 5309-5327. doi:10.1002/adma.201501217 es_ES
dc.relation.references Maiyalagan, T., & Viswanathan, B. (2008). Catalytic activity of platinum/tungsten oxide nanorod electrodes towards electro-oxidation of methanol. Journal of Power Sources, 175(2), 789-793. doi:10.1016/j.jpowsour.2007.09.106 es_ES
dc.relation.references Weber, M. F., Bevolo, A. J., Shanks, H. R., & Danielson, G. C. (1981). Electrocatalytic Activity of Cubic Sodium Tungsten Bronze: I. Effects of Platinum Doping, Anodization, and Platinum Pre‐Electrolysis of the Electrolyte. Journal of The Electrochemical Society, 128(5), 996-1003. doi:10.1149/1.2127588 es_ES
dc.relation.references Wickman, B., Wesselmark, M., Lagergren, C., & Lindbergh, G. (2011). Tungsten oxide in polymer electrolyte fuel cell electrodes—A thin-film model electrode study. Electrochimica Acta, 56(25), 9496-9503. doi:10.1016/j.electacta.2011.08.046 es_ES
dc.relation.references Dey, K. R., Debnath, T., Rüscher, C. H., Sundberg, M., & Hussain, A. (2010). Synthesis and characterization of niobium doped hexagonal tungsten bronze in the systems, CsxNbyW1−yO3. Journal of Materials Science, 46(5), 1388-1395. doi:10.1007/s10853-010-4932-3 es_ES
dc.relation.references Zhang, Z., Liu, J., Gu, J., Su, L., & Cheng, L. (2014). An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ. Sci., 7(8), 2535-2558. doi:10.1039/c3ee43886d es_ES
dc.relation.references Murawska, M., Cox, J. A., & Miecznikowski, K. (2014). PtIr–WO3 nanostructured alloy for electrocatalytic oxidation of ethylene glycol and ethanol. Journal of Solid State Electrochemistry, 18(11), 3003-3010. doi:10.1007/s10008-014-2493-0 es_ES
dc.relation.references Li, X. P., Xiang, X. D., Yang, H. Y., Wang, X. J., Tan, C. L., & Li, W. S. (2013). Hydrogen Tungsten Bronze-Supported Platinum as Electrocatalyst for Methanol Oxidation. Fuel Cells, 13(2), 314-318. doi:10.1002/fuce.201000131 es_ES
dc.relation.references Kulesza, P. J., Pieta, I. S., Rutkowska, I. A., Wadas, A., Marks, D., Klak, K., … Cox, J. A. (2013). Electrocatalytic oxidation of small organic molecules in acid medium: Enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides. Electrochimica Acta, 110, 474-483. doi:10.1016/j.electacta.2013.06.052 es_ES
dc.relation.references BROYDE, B. (1968). Tungsten bronze fuel cell catalysts. Journal of Catalysis, 10(1), 13-18. doi:10.1016/0021-9517(68)90217-0 es_ES
dc.relation.references Li, G., Guo, C., Yan, M., & Liu, S. (2016). Cs x WO 3 nanorods: Realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region. Applied Catalysis B: Environmental, 183, 142-148. doi:10.1016/j.apcatb.2015.10.039 es_ES
dc.relation.references Xi, Y., Chen, Z., Gan Wei Kiat, V., Huang, L., & Cheng, H. (2015). On the mechanism of catalytic hydrogenation of thiophene on hydrogen tungsten bronze. Physical Chemistry Chemical Physics, 17(15), 9698-9705. doi:10.1039/c4cp05298f es_ES
dc.relation.references Liu, Y., Shrestha, S., & Mustain, W. E. (2012). Synthesis of Nanosize Tungsten Oxide and Its Evaluation as an Electrocatalyst Support for Oxygen Reduction in Acid Media. ACS Catalysis, 2(3), 456-463. doi:10.1021/cs200657w es_ES
dc.relation.references Song, J., Huang, Z.-F., Pan, L., Zou, J.-J., Zhang, X., & Wang, L. (2015). Oxygen-Deficient Tungsten Oxide as Versatile and Efficient Hydrogenation Catalyst. ACS Catalysis, 5(11), 6594-6599. doi:10.1021/acscatal.5b01522 es_ES
dc.relation.references Okumura, K., Ishida, S., Takahata, R., & Katada, N. (2013). Structure and catalysis of layered Nb–W oxide constructed by the self-assembly of nanofibers. Catalysis Today, 204, 197-203. doi:10.1016/j.cattod.2012.06.034 es_ES
dc.relation.references Yue, C., Zhu, X., Rigutto, M., & Hensen, E. (2015). Acid catalytic properties of reduced tungsten and niobium-tungsten oxides. Applied Catalysis B: Environmental, 163, 370-381. doi:10.1016/j.apcatb.2014.08.008 es_ES
dc.relation.references Botella, P., Solsona, B., García-González, E., González-Calbet, J. M., & López Nieto, J. M. (2007). The hydrothermal synthesis of tetragonal tungsten bronze-based catalysts for the selective oxidation of hydrocarbons. Chemical Communications, (47), 5040. doi:10.1039/b711228a es_ES
dc.relation.references Soriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622e es_ES
dc.relation.references Chieregato, A., Soriano, M. D., García-González, E., Puglia, G., Basile, F., Concepción, P., … Cavani, F. (2014). Multielement Crystalline and Pseudocrystalline Oxides as Efficient Catalysts for the Direct Transformation of Glycerol into Acrylic Acid. ChemSusChem, 8(2), 398-406. doi:10.1002/cssc.201402721 es_ES
dc.relation.references Soriano, M. D., Chieregato, A., Zamora, S., Basile, F., Cavani, F., & López Nieto, J. M. (2015). Promoted Hexagonal Tungsten Bronzes as Selective Catalysts in the Aerobic Transformation of Alcohols: Glycerol and Methanol. Topics in Catalysis, 59(2-4), 178-185. doi:10.1007/s11244-015-0440-7 es_ES
dc.relation.references Nagy, D., Nagy, D., Szilágyi, I. M., & Fan, X. (2016). Effect of the morphology and phases of WO3 nanocrystals on their photocatalytic efficiency. RSC Advances, 6(40), 33743-33754. doi:10.1039/c5ra26582g es_ES
dc.relation.references Lin, S., Guo, Y., Li, X., & Liu, Y. (2015). Glycine acid-assisted green hydrothermal synthesis and controlled growth of WO3 nanowires. Materials Letters, 152, 102-104. doi:10.1016/j.matlet.2015.03.099 es_ES
dc.relation.references Miao, B., Zeng, W., Hussain, S., Mei, Q., Xu, S., Zhang, H., … Li, T. (2015). Large scale hydrothermal synthesis of monodisperse hexagonal WO3 nanowire and the growth mechanism. Materials Letters, 147, 12-15. doi:10.1016/j.matlet.2015.02.020 es_ES
dc.relation.references Marques, A. C., Santos, L., Costa, M. N., Dantas, J. M., Duarte, P., Gonçalves, A., … Fortunato, E. (2015). Office Paper Platform for Bioelectrochromic Detection of Electrochemically Active Bacteria using Tungsten Trioxide Nanoprobes. Scientific Reports, 5(1). doi:10.1038/srep09910 es_ES
dc.relation.references Magnéli, A., Virtanen, A. I., Olsen, J., Virtanen, A. I., & Sörensen, N. A. (1953). Studies on the Hexagonal Tungsten Bronzes of Potassium, Rubidium, and Cesium. Acta Chemica Scandinavica, 7, 315-324. doi:10.3891/acta.chem.scand.07-0315 es_ES
dc.relation.references C. D. Vanderpool M. B. MacInnis J. C. Patton US Patent 1976 es_ES
dc.relation.references Sanchez Sanchez, M., Girgsdies, F., Jastak, M., Kube, P., Schlögl, R., & Trunschke, A. (2012). Aiding the Self-Assembly of Supramolecular Polyoxometalates under Hydrothermal Conditions To Give Precursors of Complex Functional Oxides. Angewandte Chemie International Edition, 51(29), 7194-7197. doi:10.1002/anie.201200746 es_ES
dc.relation.references Sanchez Sanchez, M., Girgsdies, F., Jastak, M., Kube, P., Schlögl, R., & Trunschke, A. (2012). Aiding the Self-Assembly of Supramolecular Polyoxometalates under Hydrothermal Conditions To Give Precursors of Complex Functional Oxides. Angewandte Chemie, 124(29), 7306-7309. doi:10.1002/ange.201200746 es_ES
dc.relation.references García-González, E., Soriano, M. D., Urones-Garrote, E., & López Nieto, J. M. (2014). On the origin of the spontaneous formation of nanocavities in hexagonal bronzes (W,V)O3. Dalton Trans., 43(39), 14644-14652. doi:10.1039/c4dt01465k es_ES
dc.relation.references Szilágyi, I. M., Madarász, J., Pokol, G., Király, P., Tárkányi, G., Saukko, S., … Varga-Josepovits, K. (2008). Stability and Controlled Composition of Hexagonal WO3. Chemistry of Materials, 20(12), 4116-4125. doi:10.1021/cm800668x es_ES
dc.relation.references Guo, C., Yin, S., Zhang, P., Yan, M., Adachi, K., Chonan, T., & Sato, T. (2010). Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process. Journal of Materials Chemistry, 20(38), 8227. doi:10.1039/c0jm01972k es_ES
dc.relation.references Botella, P., García-González, E., López Nieto, J. M., & González-Calbet, J. M. (2005). MoVTeNbO multifunctional catalysts: Correlation between constituent crystalline phases and catalytic performance. Solid State Sciences, 7(5), 507-519. doi:10.1016/j.solidstatesciences.2005.01.012 es_ES
dc.relation.references Kong, Y., Sun, H., Zhao, X., Gao, B., & Fan, W. (2015). Fabrication of hexagonal/cubic tungsten oxide homojunction with improved photocatalytic activity. Applied Catalysis A: General, 505, 447-455. doi:10.1016/j.apcata.2015.05.015 es_ES
dc.relation.references Botella, P., Solsona, B., López Nieto, J. M., Concepción, P., Jordá, J. L., & Doménech-Carbó, M. T. (2010). Mo–W-containing tetragonal tungsten bronzes through isomorphic substitution of molybdenum by tungsten. Catalysis Today, 158(1-2), 162-169. doi:10.1016/j.cattod.2010.05.024 es_ES
dc.relation.references Griffith, W. P., & Lesniak, P. J. B. (1969). Raman studies on species in aqueous solutions. Part III. Vanadates, molybdates, and tungstates. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1066. doi:10.1039/j19690001066 es_ES
dc.relation.references Zheng, Z., Yan, B., Zhang, J., You, Y., Lim, C. T., Shen, Z., & Yu, T. (2008). Potassium Tungsten Bronze Nanowires: Polarized Micro-Raman Scattering of Individual Nanowires and Electron Field Emission from Nanowire Films. Advanced Materials, 20(2), 352-356. doi:10.1002/adma.200701514 es_ES
dc.relation.references Sanchez, C., Livage, J., & Lucazeau, G. (1982). Infrared and Raman study of amorphous V2O5. Journal of Raman Spectroscopy, 12(1), 68-72. doi:10.1002/jrs.1250120110 es_ES
dc.relation.references Szilágyi, I. M., Madarász, J., Pokol, G., Hange, F., Szalontai, G., Varga-Josepovits, K., & Tóth, A. L. (2009). The effect of K+ ion exchange on the structure and thermal reduction of hexagonal ammonium tungsten bronze. Journal of Thermal Analysis and Calorimetry, 97(1), 11-18. doi:10.1007/s10973-008-9752-1 es_ES
dc.relation.references Fouad, N. E., Nohman, A. K. ., Mohamed, M. A., & Zaki, M. I. (2000). Characterization of ammonium tungsten bronze [(NH4)0.33WO3] in the thermal decomposition course of ammonium paratungstate. Journal of Analytical and Applied Pyrolysis, 56(1), 23-31. doi:10.1016/s0165-2370(00)00084-x es_ES
dc.relation.references Huo, L., Zhao, H., Mauvy, F., Fourcade, S., Labrugere, C., Pouchard, M., & Grenier, J.-C. (2004). Synthesis and mixed conductivity of ammonium tungsten bronze with tunneling structures. Solid State Sciences, 6(7), 679-688. doi:10.1016/j.solidstatesciences.2004.03.036 es_ES
dc.relation.references Perra, D., Drenchev, N., Chakarova, K., Cutrufello, M. G., & Hadjiivanov, K. (2014). Remarkable acid strength of ammonium ions in zeolites: FTIR study of low-temperature CO adsorption on NH4FER. RSC Adv., 4(99), 56183-56187. doi:10.1039/c4ra12504e es_ES
dc.relation.references Oshihara, K., Hisano, T., & Ueda, W. (2001). Topics in Catalysis, 15(2/4), 153-160. doi:10.1023/a:1016630307377 es_ES
dc.relation.references Sohn, J. R., & Park, M. Y. (1998). Characterization of Zirconia-Supported Tungsten Oxide Catalyst. Langmuir, 14(21), 6140-6145. doi:10.1021/la980222z es_ES
dc.relation.references Wachs, I. E., & Routray, K. (2012). Catalysis Science of Bulk Mixed Oxides. ACS Catalysis, 2(6), 1235-1246. doi:10.1021/cs2005482 es_ES
dc.relation.references Tatibouët, J. M. (1997). Methanol oxidation as a catalytic surface probe. Applied Catalysis A: General, 148(2), 213-252. doi:10.1016/s0926-860x(96)00236-0 es_ES
dc.relation.references Badlani, M., & Wachs, I. E. (2001). Catalysis Letters, 75(3/4), 137-149. doi:10.1023/a:1016715520904 es_ES
dc.relation.references Chieregato, A., Soriano, M. D., Basile, F., Liosi, G., Zamora, S., Concepción, P., … López Nieto, J. M. (2014). One-pot glycerol oxidehydration to acrylic acid on multifunctional catalysts: Focus on the influence of the reaction parameters in respect to the catalytic performance. Applied Catalysis B: Environmental, 150-151, 37-46. doi:10.1016/j.apcatb.2013.11.045 es_ES
dc.relation.references Omata, K., Matsumoto, K., Murayama, T., & Ueda, W. (2016). Direct oxidative transformation of glycerol to acrylic acid over Nb-based complex metal oxide catalysts. Catalysis Today, 259, 205-212. doi:10.1016/j.cattod.2015.07.016 es_ES
dc.relation.references Chieregato, A., Basile, F., Concepción, P., Guidetti, S., Liosi, G., Soriano, M. D., … Nieto, J. M. L. (2012). Glycerol oxidehydration into acrolein and acrylic acid over W–V–Nb–O bronzes with hexagonal structure. Catalysis Today, 197(1), 58-65. doi:10.1016/j.cattod.2012.06.024 es_ES
dc.relation.references Yun, Y. S., Lee, K. R., Park, H., Kim, T. Y., Yun, D., Han, J. W., & Yi, J. (2014). Rational Design of a Bifunctional Catalyst for the Oxydehydration of Glycerol: A Combined Theoretical and Experimental Study. ACS Catalysis, 5(1), 82-94. doi:10.1021/cs501307v es_ES
dc.relation.references Katryniok, B., Bonnotte, T., Dumeignil, F., & Paul, S. (2016). Production of Bioacrylic Acid. Chemicals and Fuels from Bio-Based Building Blocks, 217-244. doi:10.1002/9783527698202.ch9 es_ES


This item appears in the following Collection(s)

Show simple item record