- -

Antibiotics mineralization by electrochemical and UV-based hybrid processes: evaluation of the synergistic effect

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Antibiotics mineralization by electrochemical and UV-based hybrid processes: evaluation of the synergistic effect

Show full item record

Da Silva, SW.; Heberle, AN.; Santos, AP.; Rodrigues, M.; Valentín Pérez-Herranz; Bernardes, A. (2018). Antibiotics mineralization by electrochemical and UV-based hybrid processes: evaluation of the synergistic effect. Environmental Technology. https://doi.org/10.1080/09593330.2018.1478453

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/146163

Files in this item

Item Metadata

Title: Antibiotics mineralization by electrochemical and UV-based hybrid processes: evaluation of the synergistic effect
Author: da Silva, Salatiel W. Heberle, Alan N.A. Santos, Alexia P. Rodrigues, M.A.S. Valentín Pérez-Herranz Bernardes, A.M.
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Issued date:
Abstract:
[EN] Antibiotics are not efficiently removed in conventional wastewater treatments. In fact, different advanced oxidation process (AOPs), including ozone, peroxide, UV radiation, among others, are being investigated in ...[+]
Subjects: UV-based processes , Electrochemical oxidation , Hybrid process , Photoassisted electrochemical oxidation , Antibiotics
Copyrigths: Reserva de todos los derechos
Source:
Environmental Technology. (issn: 0959-3330 )
DOI: 10.1080/09593330.2018.1478453
Publisher:
Taylor & Francis
Publisher version: https://doi.org/10.1080/09593330.2018.1478453
Project ID:
CAPES/DGPU-2015/7595/14-0
Thanks:
The authors thank CAPES project number DGPU-2015/7595/14-0, CNPq, FAPERGS, Cyted and FINEP for the financial support.
Type: Artículo

References

Kummerer, K. (2003). Significance of antibiotics in the environment. Journal of Antimicrobial Chemotherapy, 52(1), 5-7. doi:10.1093/jac/dkg293

Dı́az-Cruz, M. S., López de Alda, M. J., & Barceló, D. (2003). Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TrAC Trends in Analytical Chemistry, 22(6), 340-351. doi:10.1016/s0165-9936(03)00603-4

De Carvalho RN, Ceriani L, Ippolito A, et al. Development of the first Watch List under the Environmental Quality Standards Directive, in, European Commission, 2015. [+]
Kummerer, K. (2003). Significance of antibiotics in the environment. Journal of Antimicrobial Chemotherapy, 52(1), 5-7. doi:10.1093/jac/dkg293

Dı́az-Cruz, M. S., López de Alda, M. J., & Barceló, D. (2003). Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TrAC Trends in Analytical Chemistry, 22(6), 340-351. doi:10.1016/s0165-9936(03)00603-4

De Carvalho RN, Ceriani L, Ippolito A, et al. Development of the first Watch List under the Environmental Quality Standards Directive, in, European Commission, 2015.

Riaz, L., Mahmood, T., Khalid, A., Rashid, A., Ahmed Siddique, M. B., Kamal, A., & Coyne, M. S. (2018). Fluoroquinolones (FQs) in the environment: A review on their abundance, sorption and toxicity in soil. Chemosphere, 191, 704-720. doi:10.1016/j.chemosphere.2017.10.092

Hirte, K., Seiwert, B., Schüürmann, G., & Reemtsma, T. (2016). New hydrolysis products of the beta-lactam antibiotic amoxicillin, their pH-dependent formation and search in municipal wastewater. Water Research, 88, 880-888. doi:10.1016/j.watres.2015.11.028

D. Barcelo, J. Bennett, editors. Antibiotic Resistance in the Environment. Sci Total Environ; 2015.

Larsen, T. A., Lienert, J., Joss, A., & Siegrist, H. (2004). How to avoid pharmaceuticals in the aquatic environment. Journal of Biotechnology, 113(1-3), 295-304. doi:10.1016/j.jbiotec.2004.03.033

Barbosa, M. O., Moreira, N. F. F., Ribeiro, A. R., Pereira, M. F. R., & Silva, A. M. T. (2016). Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Research, 94, 257-279. doi:10.1016/j.watres.2016.02.047

Niu, J., Zhang, L., Li, Y., Zhao, J., Lv, S., & Xiao, K. (2013). Effects of environmental factors on sulfamethoxazole photodegradation under simulated sunlight irradiation: Kinetics and mechanism. Journal of Environmental Sciences, 25(6), 1098-1106. doi:10.1016/s1001-0742(12)60167-3

Wan, Z., Hu, J., & Wang, J. (2016). Removal of sulfamethazine antibiotics using Ce Fe-graphene nanocomposite as catalyst by Fenton-like process. Journal of Environmental Management, 182, 284-291. doi:10.1016/j.jenvman.2016.07.088

Marcelino, R. B. P., Leão, M. M. D., Lago, R. M., & Amorim, C. C. (2017). Multistage ozone and biological treatment system for real wastewater containing antibiotics. Journal of Environmental Management, 195, 110-116. doi:10.1016/j.jenvman.2016.04.041

Zhu, L., Santiago-Schübel, B., Xiao, H., Hollert, H., & Kueppers, S. (2016). Electrochemical oxidation of fluoroquinolone antibiotics: Mechanism, residual antibacterial activity and toxicity change. Water Research, 102, 52-62. doi:10.1016/j.watres.2016.06.005

Choudhry, G. G., & Webster, G. R. B. (1987). Environmental photochemistry of polychlorinated dibenzofurans (PCDFs) and dibenzo‐p‐dioxins (PCDDs): A review. Toxicological & Environmental Chemistry, 14(1-2), 43-61. doi:10.1080/02772248709357193

Juretic, D., Kusic, H., Koprivanac, N., & Loncaric Bozic, A. (2012). Photooxidation of benzene-structured compounds: Influence of substituent type on degradation kinetic and sum water parameters. Water Research, 46(9), 3074-3084. doi:10.1016/j.watres.2012.03.014

Yuan, F., Hu, C., Hu, X., Qu, J., & Yang, M. (2009). Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H2O2. Water Research, 43(6), 1766-1774. doi:10.1016/j.watres.2009.01.008

Kim, I., Yamashita, N., & Tanaka, H. (2009). Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. Journal of Hazardous Materials, 166(2-3), 1134-1140. doi:10.1016/j.jhazmat.2008.12.020

Da Silva, S. W., Viegas, C., Ferreira, J. Z., Rodrigues, M. A. S., & Bernardes, A. M. (2016). The effect of the UV photon flux on the photoelectrocatalytic degradation of endocrine-disrupting alkylphenolic chemicals. Environmental Science and Pollution Research, 23(19), 19237-19245. doi:10.1007/s11356-016-7121-3

Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Applied Catalysis B: Environmental, 49(1), 1-14. doi:10.1016/j.apcatb.2003.11.010

Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93(7), 1268-1287. doi:10.1016/j.chemosphere.2013.07.059

Kapałka, A., Fóti, G., & Comninellis, C. (2009). The importance of electrode material in environmental electrochemistry. Electrochimica Acta, 54(7), 2018-2023. doi:10.1016/j.electacta.2008.06.045

Kapałka, A., Lanova, B., Baltruschat, H., Fóti, G., & Comninellis, C. (2008). Electrochemically induced mineralization of organics by molecular oxygen on boron-doped diamond electrode. Electrochemistry Communications, 10(9), 1215-1218. doi:10.1016/j.elecom.2008.06.005

Einaga, Y., Foord, J. S., & Swain, G. M. (2014). Diamond electrodes: Diversity and maturity. MRS Bulletin, 39(6), 525-532. doi:10.1557/mrs.2014.94

Fóti, G., Mousty, C., Reid, V., & Comninellis, C. (1998). Characterization of DSA type electrodes prepared by rapid thermal decomposition of the metal precursor. Electrochimica Acta, 44(5), 813-818. doi:10.1016/s0013-4686(98)00240-0

Trasatti, S. (2000). Electrocatalysis: understanding the success of DSA®. Electrochimica Acta, 45(15-16), 2377-2385. doi:10.1016/s0013-4686(00)00338-8

Pelegrini, R., Peralta-Zamora, P., de Andrade, A. R., Reyes, J., & Durán, N. (1999). Electrochemically assisted photocatalytic degradation of reactive dyes. Applied Catalysis B: Environmental, 22(2), 83-90. doi:10.1016/s0926-3373(99)00037-5

Pinhedo, L., Pelegrini, R., Bertazzoli, R., & Motheo, A. J. (2005). Photoelectrochemical degradation of humic acid on a (TiO2)0.7(RuO2)0.3 dimensionally stable anode. Applied Catalysis B: Environmental, 57(2), 75-81. doi:10.1016/j.apcatb.2004.10.006

Batchu, S. R., Panditi, V. R., O’Shea, K. E., & Gardinali, P. R. (2014). Photodegradation of antibiotics under simulated solar radiation: Implications for their environmental fate. Science of The Total Environment, 470-471, 299-310. doi:10.1016/j.scitotenv.2013.09.057

Gonçalves, A. G., Órfão, J. J. M., & Pereira, M. F. R. (2014). Ozonation of erythromycin over carbon materials and ceria dispersed on carbon materials. Chemical Engineering Journal, 250, 366-376. doi:10.1016/j.cej.2014.04.012

Liu, P., Zhang, H., Feng, Y., Yang, F., & Zhang, J. (2014). Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes. Chemical Engineering Journal, 240, 211-220. doi:10.1016/j.cej.2013.11.057

Bolton, J. R., Bircher, K. G., Tumas, W., & Tolman, C. A. (2001). Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC Technical Report). Pure and Applied Chemistry, 73(4), 627-637. doi:10.1351/pac200173040627

Li, G., Zhu, M., Chen, J., Li, Y., & Zhang, X. (2011). Production and contribution of hydroxyl radicals between the DSA anode and water interface. Journal of Environmental Sciences, 23(5), 744-748. doi:10.1016/s1001-0742(10)60470-6

Panizza, M., & Cerisola, G. (2009). Direct And Mediated Anodic Oxidation of Organic Pollutants. Chemical Reviews, 109(12), 6541-6569. doi:10.1021/cr9001319

Niu, X.-Z., Busetti, F., Langsa, M., & Croué, J.-P. (2016). Roles of singlet oxygen and dissolved organic matter in self-sensitized photo-oxidation of antibiotic norfloxacin under sunlight irradiation. Water Research, 106, 214-222. doi:10.1016/j.watres.2016.10.002

Hartmann, J., Bartels, P., Mau, U., Witter, M., Tümpling, W. v., Hofmann, J., & Nietzschmann, E. (2008). Degradation of the drug diclofenac in water by sonolysis in presence of catalysts. Chemosphere, 70(3), 453-461. doi:10.1016/j.chemosphere.2007.06.063

Martínez-Huitle, C. A., Rodrigo, M. A., Sirés, I., & Scialdone, O. (2015). Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chemical Reviews, 115(24), 13362-13407. doi:10.1021/acs.chemrev.5b00361

Ohtani, B. (2010). Photocatalysis A to Z—What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(4), 157-178. doi:10.1016/j.jphotochemrev.2011.02.001

Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997-3027. doi:10.1016/j.watres.2010.02.039

Li, G., Zhu, W., Chai, X., Zhu, L., & Zhang, X. (2015). Partial oxidation of polyvinyl alcohol using a commercially available DSA anode. Journal of Industrial and Engineering Chemistry, 31, 55-60. doi:10.1016/j.jiec.2015.05.042

Montgomery DC. Introduction to statistical quality control, 2009.

Montgomery DC. Design and analysis of experiments, 2012.

Kumar, K. V., Porkodi, K., & Rocha, F. (2008). Langmuir–Hinshelwood kinetics – A theoretical study. Catalysis Communications, 9(1), 82-84. doi:10.1016/j.catcom.2007.05.019

Daneshvar, N., Rasoulifard, M. H., Khataee, A. R., & Hosseinzadeh, F. (2007). Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder. Journal of Hazardous Materials, 143(1-2), 95-101. doi:10.1016/j.jhazmat.2006.08.072

Hussain, S., Steter, J. R., Gul, S., & Motheo, A. J. (2017). Photo-assisted electrochemical degradation of sulfamethoxazole using a Ti/Ru 0.3 Ti 0.7 O 2 anode: Mechanistic and kinetic features of the process. Journal of Environmental Management, 201, 153-162. doi:10.1016/j.jenvman.2017.06.043

Heberle, A. N. A., da Silva, S. W., Klauck, C. R., Ferreira, J. Z., Rodrigues, M. A. S., & Bernardes, A. M. (2017). Electrochemical enhanced photocatalysis to the 2,4,6 Tribromophenol flame retardant degradation. Journal of Catalysis, 351, 136-145. doi:10.1016/j.jcat.2017.04.011

Da Silva, S. W., Bordignon, G. L., Viegas, C., Rodrigues, M. A. S., Arenzon, A., & Bernardes, A. M. (2015). Treatment of solutions containing nonylphenol ethoxylate by photoelectrooxidation. Chemosphere, 119, S101-S108. doi:10.1016/j.chemosphere.2014.03.134

Xin, Y., Gao, M., Wang, Y., & Ma, D. (2014). Photoelectrocatalytic degradation of 4-nonylphenol in water with WO3/TiO2 nanotube array photoelectrodes. Chemical Engineering Journal, 242, 162-169. doi:10.1016/j.cej.2013.12.068

Hurwitz, G., Hoek, E. M. V., Liu, K., Fan, L., & Roddick, F. A. (2014). Photo-assisted electrochemical treatment of municipal wastewater reverse osmosis concentrate. Chemical Engineering Journal, 249, 180-188. doi:10.1016/j.cej.2014.03.084

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record