Kummerer, K. (2003). Significance of antibiotics in the environment. Journal of Antimicrobial Chemotherapy, 52(1), 5-7. doi:10.1093/jac/dkg293
Dı́az-Cruz, M. S., López de Alda, M. J., & Barceló, D. (2003). Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TrAC Trends in Analytical Chemistry, 22(6), 340-351. doi:10.1016/s0165-9936(03)00603-4
De Carvalho RN, Ceriani L, Ippolito A, et al. Development of the first Watch List under the Environmental Quality Standards Directive, in, European Commission, 2015.
[+]
Kummerer, K. (2003). Significance of antibiotics in the environment. Journal of Antimicrobial Chemotherapy, 52(1), 5-7. doi:10.1093/jac/dkg293
Dı́az-Cruz, M. S., López de Alda, M. J., & Barceló, D. (2003). Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TrAC Trends in Analytical Chemistry, 22(6), 340-351. doi:10.1016/s0165-9936(03)00603-4
De Carvalho RN, Ceriani L, Ippolito A, et al. Development of the first Watch List under the Environmental Quality Standards Directive, in, European Commission, 2015.
Riaz, L., Mahmood, T., Khalid, A., Rashid, A., Ahmed Siddique, M. B., Kamal, A., & Coyne, M. S. (2018). Fluoroquinolones (FQs) in the environment: A review on their abundance, sorption and toxicity in soil. Chemosphere, 191, 704-720. doi:10.1016/j.chemosphere.2017.10.092
Hirte, K., Seiwert, B., Schüürmann, G., & Reemtsma, T. (2016). New hydrolysis products of the beta-lactam antibiotic amoxicillin, their pH-dependent formation and search in municipal wastewater. Water Research, 88, 880-888. doi:10.1016/j.watres.2015.11.028
D. Barcelo, J. Bennett, editors. Antibiotic Resistance in the Environment. Sci Total Environ; 2015.
Larsen, T. A., Lienert, J., Joss, A., & Siegrist, H. (2004). How to avoid pharmaceuticals in the aquatic environment. Journal of Biotechnology, 113(1-3), 295-304. doi:10.1016/j.jbiotec.2004.03.033
Barbosa, M. O., Moreira, N. F. F., Ribeiro, A. R., Pereira, M. F. R., & Silva, A. M. T. (2016). Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Research, 94, 257-279. doi:10.1016/j.watres.2016.02.047
Niu, J., Zhang, L., Li, Y., Zhao, J., Lv, S., & Xiao, K. (2013). Effects of environmental factors on sulfamethoxazole photodegradation under simulated sunlight irradiation: Kinetics and mechanism. Journal of Environmental Sciences, 25(6), 1098-1106. doi:10.1016/s1001-0742(12)60167-3
Wan, Z., Hu, J., & Wang, J. (2016). Removal of sulfamethazine antibiotics using Ce Fe-graphene nanocomposite as catalyst by Fenton-like process. Journal of Environmental Management, 182, 284-291. doi:10.1016/j.jenvman.2016.07.088
Marcelino, R. B. P., Leão, M. M. D., Lago, R. M., & Amorim, C. C. (2017). Multistage ozone and biological treatment system for real wastewater containing antibiotics. Journal of Environmental Management, 195, 110-116. doi:10.1016/j.jenvman.2016.04.041
Zhu, L., Santiago-Schübel, B., Xiao, H., Hollert, H., & Kueppers, S. (2016). Electrochemical oxidation of fluoroquinolone antibiotics: Mechanism, residual antibacterial activity and toxicity change. Water Research, 102, 52-62. doi:10.1016/j.watres.2016.06.005
Choudhry, G. G., & Webster, G. R. B. (1987). Environmental photochemistry of polychlorinated dibenzofurans (PCDFs) and dibenzo‐p‐dioxins (PCDDs): A review. Toxicological & Environmental Chemistry, 14(1-2), 43-61. doi:10.1080/02772248709357193
Juretic, D., Kusic, H., Koprivanac, N., & Loncaric Bozic, A. (2012). Photooxidation of benzene-structured compounds: Influence of substituent type on degradation kinetic and sum water parameters. Water Research, 46(9), 3074-3084. doi:10.1016/j.watres.2012.03.014
Yuan, F., Hu, C., Hu, X., Qu, J., & Yang, M. (2009). Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H2O2. Water Research, 43(6), 1766-1774. doi:10.1016/j.watres.2009.01.008
Kim, I., Yamashita, N., & Tanaka, H. (2009). Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. Journal of Hazardous Materials, 166(2-3), 1134-1140. doi:10.1016/j.jhazmat.2008.12.020
Da Silva, S. W., Viegas, C., Ferreira, J. Z., Rodrigues, M. A. S., & Bernardes, A. M. (2016). The effect of the UV photon flux on the photoelectrocatalytic degradation of endocrine-disrupting alkylphenolic chemicals. Environmental Science and Pollution Research, 23(19), 19237-19245. doi:10.1007/s11356-016-7121-3
Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Applied Catalysis B: Environmental, 49(1), 1-14. doi:10.1016/j.apcatb.2003.11.010
Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93(7), 1268-1287. doi:10.1016/j.chemosphere.2013.07.059
Kapałka, A., Fóti, G., & Comninellis, C. (2009). The importance of electrode material in environmental electrochemistry. Electrochimica Acta, 54(7), 2018-2023. doi:10.1016/j.electacta.2008.06.045
Kapałka, A., Lanova, B., Baltruschat, H., Fóti, G., & Comninellis, C. (2008). Electrochemically induced mineralization of organics by molecular oxygen on boron-doped diamond electrode. Electrochemistry Communications, 10(9), 1215-1218. doi:10.1016/j.elecom.2008.06.005
Einaga, Y., Foord, J. S., & Swain, G. M. (2014). Diamond electrodes: Diversity and maturity. MRS Bulletin, 39(6), 525-532. doi:10.1557/mrs.2014.94
Fóti, G., Mousty, C., Reid, V., & Comninellis, C. (1998). Characterization of DSA type electrodes prepared by rapid thermal decomposition of the metal precursor. Electrochimica Acta, 44(5), 813-818. doi:10.1016/s0013-4686(98)00240-0
Trasatti, S. (2000). Electrocatalysis: understanding the success of DSA®. Electrochimica Acta, 45(15-16), 2377-2385. doi:10.1016/s0013-4686(00)00338-8
Pelegrini, R., Peralta-Zamora, P., de Andrade, A. R., Reyes, J., & Durán, N. (1999). Electrochemically assisted photocatalytic degradation of reactive dyes. Applied Catalysis B: Environmental, 22(2), 83-90. doi:10.1016/s0926-3373(99)00037-5
Pinhedo, L., Pelegrini, R., Bertazzoli, R., & Motheo, A. J. (2005). Photoelectrochemical degradation of humic acid on a (TiO2)0.7(RuO2)0.3 dimensionally stable anode. Applied Catalysis B: Environmental, 57(2), 75-81. doi:10.1016/j.apcatb.2004.10.006
Batchu, S. R., Panditi, V. R., O’Shea, K. E., & Gardinali, P. R. (2014). Photodegradation of antibiotics under simulated solar radiation: Implications for their environmental fate. Science of The Total Environment, 470-471, 299-310. doi:10.1016/j.scitotenv.2013.09.057
Gonçalves, A. G., Órfão, J. J. M., & Pereira, M. F. R. (2014). Ozonation of erythromycin over carbon materials and ceria dispersed on carbon materials. Chemical Engineering Journal, 250, 366-376. doi:10.1016/j.cej.2014.04.012
Liu, P., Zhang, H., Feng, Y., Yang, F., & Zhang, J. (2014). Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes. Chemical Engineering Journal, 240, 211-220. doi:10.1016/j.cej.2013.11.057
Bolton, J. R., Bircher, K. G., Tumas, W., & Tolman, C. A. (2001). Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC Technical Report). Pure and Applied Chemistry, 73(4), 627-637. doi:10.1351/pac200173040627
Li, G., Zhu, M., Chen, J., Li, Y., & Zhang, X. (2011). Production and contribution of hydroxyl radicals between the DSA anode and water interface. Journal of Environmental Sciences, 23(5), 744-748. doi:10.1016/s1001-0742(10)60470-6
Panizza, M., & Cerisola, G. (2009). Direct And Mediated Anodic Oxidation of Organic Pollutants. Chemical Reviews, 109(12), 6541-6569. doi:10.1021/cr9001319
Niu, X.-Z., Busetti, F., Langsa, M., & Croué, J.-P. (2016). Roles of singlet oxygen and dissolved organic matter in self-sensitized photo-oxidation of antibiotic norfloxacin under sunlight irradiation. Water Research, 106, 214-222. doi:10.1016/j.watres.2016.10.002
Hartmann, J., Bartels, P., Mau, U., Witter, M., Tümpling, W. v., Hofmann, J., & Nietzschmann, E. (2008). Degradation of the drug diclofenac in water by sonolysis in presence of catalysts. Chemosphere, 70(3), 453-461. doi:10.1016/j.chemosphere.2007.06.063
Martínez-Huitle, C. A., Rodrigo, M. A., Sirés, I., & Scialdone, O. (2015). Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chemical Reviews, 115(24), 13362-13407. doi:10.1021/acs.chemrev.5b00361
Ohtani, B. (2010). Photocatalysis A to Z—What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(4), 157-178. doi:10.1016/j.jphotochemrev.2011.02.001
Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997-3027. doi:10.1016/j.watres.2010.02.039
Li, G., Zhu, W., Chai, X., Zhu, L., & Zhang, X. (2015). Partial oxidation of polyvinyl alcohol using a commercially available DSA anode. Journal of Industrial and Engineering Chemistry, 31, 55-60. doi:10.1016/j.jiec.2015.05.042
Montgomery DC. Introduction to statistical quality control, 2009.
Montgomery DC. Design and analysis of experiments, 2012.
Kumar, K. V., Porkodi, K., & Rocha, F. (2008). Langmuir–Hinshelwood kinetics – A theoretical study. Catalysis Communications, 9(1), 82-84. doi:10.1016/j.catcom.2007.05.019
Daneshvar, N., Rasoulifard, M. H., Khataee, A. R., & Hosseinzadeh, F. (2007). Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder. Journal of Hazardous Materials, 143(1-2), 95-101. doi:10.1016/j.jhazmat.2006.08.072
Hussain, S., Steter, J. R., Gul, S., & Motheo, A. J. (2017). Photo-assisted electrochemical degradation of sulfamethoxazole using a Ti/Ru 0.3 Ti 0.7 O 2 anode: Mechanistic and kinetic features of the process. Journal of Environmental Management, 201, 153-162. doi:10.1016/j.jenvman.2017.06.043
Heberle, A. N. A., da Silva, S. W., Klauck, C. R., Ferreira, J. Z., Rodrigues, M. A. S., & Bernardes, A. M. (2017). Electrochemical enhanced photocatalysis to the 2,4,6 Tribromophenol flame retardant degradation. Journal of Catalysis, 351, 136-145. doi:10.1016/j.jcat.2017.04.011
Da Silva, S. W., Bordignon, G. L., Viegas, C., Rodrigues, M. A. S., Arenzon, A., & Bernardes, A. M. (2015). Treatment of solutions containing nonylphenol ethoxylate by photoelectrooxidation. Chemosphere, 119, S101-S108. doi:10.1016/j.chemosphere.2014.03.134
Xin, Y., Gao, M., Wang, Y., & Ma, D. (2014). Photoelectrocatalytic degradation of 4-nonylphenol in water with WO3/TiO2 nanotube array photoelectrodes. Chemical Engineering Journal, 242, 162-169. doi:10.1016/j.cej.2013.12.068
Hurwitz, G., Hoek, E. M. V., Liu, K., Fan, L., & Roddick, F. A. (2014). Photo-assisted electrochemical treatment of municipal wastewater reverse osmosis concentrate. Chemical Engineering Journal, 249, 180-188. doi:10.1016/j.cej.2014.03.084
[-]