Mostrar el registro sencillo del ítem
dc.contributor.author | da Silva, Salatiel W. | es_ES |
dc.contributor.author | Heberle, Alan N.A. | es_ES |
dc.contributor.author | Santos, Alexia P. | es_ES |
dc.contributor.author | Rodrigues, M.A.S. | es_ES |
dc.contributor.author | Valentín Pérez-Herranz | es_ES |
dc.contributor.author | Bernardes, A.M. | es_ES |
dc.date.accessioned | 2020-06-12T03:33:17Z | |
dc.date.available | 2020-06-12T03:33:17Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0959-3330 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146163 | |
dc.description.abstract | [EN] Antibiotics are not efficiently removed in conventional wastewater treatments. In fact, different advanced oxidation process (AOPs), including ozone, peroxide, UV radiation, among others, are being investigated in the elimination of microcontaminants. Most of AOPs proved to be efficient on the degradation of antibiotics, but the mineralization is on the one hand not evaluated or on the other hand not high. At this work, the UV-based hybrid process, namely Photo-assisted electrochemical oxidation (PEO), was applied, aiming the mineralization of microcontaminants such as the antibiotics Amoxicillin (AMX), Norfloxacin (NOR) and Azithromycin (AZI). The influence of the individual contributions of electrochemical oxidation (EO) and the UV-base processes on the hybrid process (PEO) was analysed. Results showed that AMX and NOR presented higher mineralization rate under direct photolysis than AZI due to the high absorption of UV radiation. For the EO processes, a low mineralization was found for all antibiotics, what was associated to a mass-transport limitation related to the low concentration of contaminants (200 ¿g/L). Besides that, an increase in mineralization was found, when heterogeneous photocatalysis and EO are compared, due to the influence of UV radiation, which overcomes the mass-transport limitations. Although the UV-based processes control the reaction pathway that leads to mineralization, the best results to mineralize the antibiotics were achieved by PEO hybrid process. This can be explained by the synergistic effect of the processes that constitute them. A higher mineralization was achieved, which is an important and useful finding to avoid the discharge of microcontaminants in the environment. | es_ES |
dc.description.sponsorship | The authors thank CAPES project number DGPU-2015/7595/14-0, CNPq, FAPERGS, Cyted and FINEP for the financial support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Environmental Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | UV-based processes | es_ES |
dc.subject | Electrochemical oxidation | es_ES |
dc.subject | Hybrid process | es_ES |
dc.subject | Photoassisted electrochemical oxidation | es_ES |
dc.subject | Antibiotics | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Antibiotics mineralization by electrochemical and UV-based hybrid processes: evaluation of the synergistic effect | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/09593330.2018.1478453 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAPES//DGPU-2015%2F7595%2F14-0/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Da Silva, SW.; Heberle, AN.; Santos, AP.; Rodrigues, M.; Valentín Pérez-Herranz; Bernardes, A. (2018). Antibiotics mineralization by electrochemical and UV-based hybrid processes: evaluation of the synergistic effect. Environmental Technology. https://doi.org/10.1080/09593330.2018.1478453 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/09593330.2018.1478453 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.identifier.pmid | 29770731 | es_ES |
dc.relation.pasarela | S\369886 | es_ES |
dc.contributor.funder | Financiadora de Estudos e Projetos, Brasil | es_ES |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul | es_ES |
dc.contributor.funder | CYTED Ciencia y Tecnología para el Desarrollo | es_ES |
dc.contributor.funder | Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil | es_ES |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |
dc.description.references | Kummerer, K. (2003). Significance of antibiotics in the environment. Journal of Antimicrobial Chemotherapy, 52(1), 5-7. doi:10.1093/jac/dkg293 | es_ES |
dc.description.references | Dı́az-Cruz, M. S., López de Alda, M. J., & Barceló, D. (2003). Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TrAC Trends in Analytical Chemistry, 22(6), 340-351. doi:10.1016/s0165-9936(03)00603-4 | es_ES |
dc.description.references | De Carvalho RN, Ceriani L, Ippolito A, et al. Development of the first Watch List under the Environmental Quality Standards Directive, in, European Commission, 2015. | es_ES |
dc.description.references | Riaz, L., Mahmood, T., Khalid, A., Rashid, A., Ahmed Siddique, M. B., Kamal, A., & Coyne, M. S. (2018). Fluoroquinolones (FQs) in the environment: A review on their abundance, sorption and toxicity in soil. Chemosphere, 191, 704-720. doi:10.1016/j.chemosphere.2017.10.092 | es_ES |
dc.description.references | Hirte, K., Seiwert, B., Schüürmann, G., & Reemtsma, T. (2016). New hydrolysis products of the beta-lactam antibiotic amoxicillin, their pH-dependent formation and search in municipal wastewater. Water Research, 88, 880-888. doi:10.1016/j.watres.2015.11.028 | es_ES |
dc.description.references | D. Barcelo, J. Bennett, editors. Antibiotic Resistance in the Environment. Sci Total Environ; 2015. | es_ES |
dc.description.references | Larsen, T. A., Lienert, J., Joss, A., & Siegrist, H. (2004). How to avoid pharmaceuticals in the aquatic environment. Journal of Biotechnology, 113(1-3), 295-304. doi:10.1016/j.jbiotec.2004.03.033 | es_ES |
dc.description.references | Barbosa, M. O., Moreira, N. F. F., Ribeiro, A. R., Pereira, M. F. R., & Silva, A. M. T. (2016). Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Research, 94, 257-279. doi:10.1016/j.watres.2016.02.047 | es_ES |
dc.description.references | Niu, J., Zhang, L., Li, Y., Zhao, J., Lv, S., & Xiao, K. (2013). Effects of environmental factors on sulfamethoxazole photodegradation under simulated sunlight irradiation: Kinetics and mechanism. Journal of Environmental Sciences, 25(6), 1098-1106. doi:10.1016/s1001-0742(12)60167-3 | es_ES |
dc.description.references | Wan, Z., Hu, J., & Wang, J. (2016). Removal of sulfamethazine antibiotics using Ce Fe-graphene nanocomposite as catalyst by Fenton-like process. Journal of Environmental Management, 182, 284-291. doi:10.1016/j.jenvman.2016.07.088 | es_ES |
dc.description.references | Marcelino, R. B. P., Leão, M. M. D., Lago, R. M., & Amorim, C. C. (2017). Multistage ozone and biological treatment system for real wastewater containing antibiotics. Journal of Environmental Management, 195, 110-116. doi:10.1016/j.jenvman.2016.04.041 | es_ES |
dc.description.references | Zhu, L., Santiago-Schübel, B., Xiao, H., Hollert, H., & Kueppers, S. (2016). Electrochemical oxidation of fluoroquinolone antibiotics: Mechanism, residual antibacterial activity and toxicity change. Water Research, 102, 52-62. doi:10.1016/j.watres.2016.06.005 | es_ES |
dc.description.references | Choudhry, G. G., & Webster, G. R. B. (1987). Environmental photochemistry of polychlorinated dibenzofurans (PCDFs) and dibenzo‐p‐dioxins (PCDDs): A review. Toxicological & Environmental Chemistry, 14(1-2), 43-61. doi:10.1080/02772248709357193 | es_ES |
dc.description.references | Juretic, D., Kusic, H., Koprivanac, N., & Loncaric Bozic, A. (2012). Photooxidation of benzene-structured compounds: Influence of substituent type on degradation kinetic and sum water parameters. Water Research, 46(9), 3074-3084. doi:10.1016/j.watres.2012.03.014 | es_ES |
dc.description.references | Yuan, F., Hu, C., Hu, X., Qu, J., & Yang, M. (2009). Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H2O2. Water Research, 43(6), 1766-1774. doi:10.1016/j.watres.2009.01.008 | es_ES |
dc.description.references | Kim, I., Yamashita, N., & Tanaka, H. (2009). Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. Journal of Hazardous Materials, 166(2-3), 1134-1140. doi:10.1016/j.jhazmat.2008.12.020 | es_ES |
dc.description.references | Da Silva, S. W., Viegas, C., Ferreira, J. Z., Rodrigues, M. A. S., & Bernardes, A. M. (2016). The effect of the UV photon flux on the photoelectrocatalytic degradation of endocrine-disrupting alkylphenolic chemicals. Environmental Science and Pollution Research, 23(19), 19237-19245. doi:10.1007/s11356-016-7121-3 | es_ES |
dc.description.references | Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Applied Catalysis B: Environmental, 49(1), 1-14. doi:10.1016/j.apcatb.2003.11.010 | es_ES |
dc.description.references | Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93(7), 1268-1287. doi:10.1016/j.chemosphere.2013.07.059 | es_ES |
dc.description.references | Kapałka, A., Fóti, G., & Comninellis, C. (2009). The importance of electrode material in environmental electrochemistry. Electrochimica Acta, 54(7), 2018-2023. doi:10.1016/j.electacta.2008.06.045 | es_ES |
dc.description.references | Kapałka, A., Lanova, B., Baltruschat, H., Fóti, G., & Comninellis, C. (2008). Electrochemically induced mineralization of organics by molecular oxygen on boron-doped diamond electrode. Electrochemistry Communications, 10(9), 1215-1218. doi:10.1016/j.elecom.2008.06.005 | es_ES |
dc.description.references | Einaga, Y., Foord, J. S., & Swain, G. M. (2014). Diamond electrodes: Diversity and maturity. MRS Bulletin, 39(6), 525-532. doi:10.1557/mrs.2014.94 | es_ES |
dc.description.references | Fóti, G., Mousty, C., Reid, V., & Comninellis, C. (1998). Characterization of DSA type electrodes prepared by rapid thermal decomposition of the metal precursor. Electrochimica Acta, 44(5), 813-818. doi:10.1016/s0013-4686(98)00240-0 | es_ES |
dc.description.references | Trasatti, S. (2000). Electrocatalysis: understanding the success of DSA®. Electrochimica Acta, 45(15-16), 2377-2385. doi:10.1016/s0013-4686(00)00338-8 | es_ES |
dc.description.references | Pelegrini, R., Peralta-Zamora, P., de Andrade, A. R., Reyes, J., & Durán, N. (1999). Electrochemically assisted photocatalytic degradation of reactive dyes. Applied Catalysis B: Environmental, 22(2), 83-90. doi:10.1016/s0926-3373(99)00037-5 | es_ES |
dc.description.references | Pinhedo, L., Pelegrini, R., Bertazzoli, R., & Motheo, A. J. (2005). Photoelectrochemical degradation of humic acid on a (TiO2)0.7(RuO2)0.3 dimensionally stable anode. Applied Catalysis B: Environmental, 57(2), 75-81. doi:10.1016/j.apcatb.2004.10.006 | es_ES |
dc.description.references | Batchu, S. R., Panditi, V. R., O’Shea, K. E., & Gardinali, P. R. (2014). Photodegradation of antibiotics under simulated solar radiation: Implications for their environmental fate. Science of The Total Environment, 470-471, 299-310. doi:10.1016/j.scitotenv.2013.09.057 | es_ES |
dc.description.references | Gonçalves, A. G., Órfão, J. J. M., & Pereira, M. F. R. (2014). Ozonation of erythromycin over carbon materials and ceria dispersed on carbon materials. Chemical Engineering Journal, 250, 366-376. doi:10.1016/j.cej.2014.04.012 | es_ES |
dc.description.references | Liu, P., Zhang, H., Feng, Y., Yang, F., & Zhang, J. (2014). Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes. Chemical Engineering Journal, 240, 211-220. doi:10.1016/j.cej.2013.11.057 | es_ES |
dc.description.references | Bolton, J. R., Bircher, K. G., Tumas, W., & Tolman, C. A. (2001). Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC Technical Report). Pure and Applied Chemistry, 73(4), 627-637. doi:10.1351/pac200173040627 | es_ES |
dc.description.references | Li, G., Zhu, M., Chen, J., Li, Y., & Zhang, X. (2011). Production and contribution of hydroxyl radicals between the DSA anode and water interface. Journal of Environmental Sciences, 23(5), 744-748. doi:10.1016/s1001-0742(10)60470-6 | es_ES |
dc.description.references | Panizza, M., & Cerisola, G. (2009). Direct And Mediated Anodic Oxidation of Organic Pollutants. Chemical Reviews, 109(12), 6541-6569. doi:10.1021/cr9001319 | es_ES |
dc.description.references | Niu, X.-Z., Busetti, F., Langsa, M., & Croué, J.-P. (2016). Roles of singlet oxygen and dissolved organic matter in self-sensitized photo-oxidation of antibiotic norfloxacin under sunlight irradiation. Water Research, 106, 214-222. doi:10.1016/j.watres.2016.10.002 | es_ES |
dc.description.references | Hartmann, J., Bartels, P., Mau, U., Witter, M., Tümpling, W. v., Hofmann, J., & Nietzschmann, E. (2008). Degradation of the drug diclofenac in water by sonolysis in presence of catalysts. Chemosphere, 70(3), 453-461. doi:10.1016/j.chemosphere.2007.06.063 | es_ES |
dc.description.references | Martínez-Huitle, C. A., Rodrigo, M. A., Sirés, I., & Scialdone, O. (2015). Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chemical Reviews, 115(24), 13362-13407. doi:10.1021/acs.chemrev.5b00361 | es_ES |
dc.description.references | Ohtani, B. (2010). Photocatalysis A to Z—What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(4), 157-178. doi:10.1016/j.jphotochemrev.2011.02.001 | es_ES |
dc.description.references | Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997-3027. doi:10.1016/j.watres.2010.02.039 | es_ES |
dc.description.references | Li, G., Zhu, W., Chai, X., Zhu, L., & Zhang, X. (2015). Partial oxidation of polyvinyl alcohol using a commercially available DSA anode. Journal of Industrial and Engineering Chemistry, 31, 55-60. doi:10.1016/j.jiec.2015.05.042 | es_ES |
dc.description.references | Montgomery DC. Introduction to statistical quality control, 2009. | es_ES |
dc.description.references | Montgomery DC. Design and analysis of experiments, 2012. | es_ES |
dc.description.references | Kumar, K. V., Porkodi, K., & Rocha, F. (2008). Langmuir–Hinshelwood kinetics – A theoretical study. Catalysis Communications, 9(1), 82-84. doi:10.1016/j.catcom.2007.05.019 | es_ES |
dc.description.references | Daneshvar, N., Rasoulifard, M. H., Khataee, A. R., & Hosseinzadeh, F. (2007). Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder. Journal of Hazardous Materials, 143(1-2), 95-101. doi:10.1016/j.jhazmat.2006.08.072 | es_ES |
dc.description.references | Hussain, S., Steter, J. R., Gul, S., & Motheo, A. J. (2017). Photo-assisted electrochemical degradation of sulfamethoxazole using a Ti/Ru 0.3 Ti 0.7 O 2 anode: Mechanistic and kinetic features of the process. Journal of Environmental Management, 201, 153-162. doi:10.1016/j.jenvman.2017.06.043 | es_ES |
dc.description.references | Heberle, A. N. A., da Silva, S. W., Klauck, C. R., Ferreira, J. Z., Rodrigues, M. A. S., & Bernardes, A. M. (2017). Electrochemical enhanced photocatalysis to the 2,4,6 Tribromophenol flame retardant degradation. Journal of Catalysis, 351, 136-145. doi:10.1016/j.jcat.2017.04.011 | es_ES |
dc.description.references | Da Silva, S. W., Bordignon, G. L., Viegas, C., Rodrigues, M. A. S., Arenzon, A., & Bernardes, A. M. (2015). Treatment of solutions containing nonylphenol ethoxylate by photoelectrooxidation. Chemosphere, 119, S101-S108. doi:10.1016/j.chemosphere.2014.03.134 | es_ES |
dc.description.references | Xin, Y., Gao, M., Wang, Y., & Ma, D. (2014). Photoelectrocatalytic degradation of 4-nonylphenol in water with WO3/TiO2 nanotube array photoelectrodes. Chemical Engineering Journal, 242, 162-169. doi:10.1016/j.cej.2013.12.068 | es_ES |
dc.description.references | Hurwitz, G., Hoek, E. M. V., Liu, K., Fan, L., & Roddick, F. A. (2014). Photo-assisted electrochemical treatment of municipal wastewater reverse osmosis concentrate. Chemical Engineering Journal, 249, 180-188. doi:10.1016/j.cej.2014.03.084 | es_ES |