- -

Sum rules and exact inequalities for strongly coupled one-component plasmas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sum rules and exact inequalities for strongly coupled one-component plasmas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arkhipov, Yu.V. es_ES
dc.contributor.author Ashikbayeva, A.B. es_ES
dc.contributor.author Askaruly, A. es_ES
dc.contributor.author Bonitz, M. es_ES
dc.contributor.author Conde, L. es_ES
dc.contributor.author Davletov, A.E. es_ES
dc.contributor.author Dornheim, T. es_ES
dc.contributor.author Dubovtsev, D.Yu. es_ES
dc.contributor.author Groth, S. es_ES
dc.contributor.author Santybayev, Kh. es_ES
dc.contributor.author Syzganbayeva, S.A. es_ES
dc.contributor.author Tkachenko Gorski, Igor Mijail es_ES
dc.date.accessioned 2020-06-12T03:33:24Z
dc.date.available 2020-06-12T03:33:24Z
dc.date.issued 2018-11 es_ES
dc.identifier.issn 0863-1042 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146165
dc.description.abstract [EN] Several sum rules and other exact relations are employed to determine both the static and the dynamic properties of strongly coupled, partially and completely degenerate one-component plasmas. Emphasis is placed on the electron gas, both at zero and finite temperatures. The procedure is based on the self-consistent method of moments, recently developed in Phys. Rev. Lett., 2017, 119, 045001, that provides a neat expression for the loss function valid at strong couplings. An input value of the method in its classical version is the static structure factor, whose accuracy is shown to insignificantly affect the resulting numerical data. Starting from the Cauchy-Bunyakovsky-Schwarz inequality, a criterion is proposed to verify the quality of various approaches to the evaluation of the static characteristics of one-component, strongly coupled plasmas. es_ES
dc.description.sponsorship This research was supported by Grants PTsF‐BR05236730, AP05132333 and AP05132677 (Ministry of Education and Science, Kazakhstan), No. BO1366-10 (Deutsche Forschungsgemeinschaft, Germany), and Grant No. ESP2013-41078R (Ministerio de Economía y Competitividad, Spain). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Contributions to Plasma Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Method of moments es_ES
dc.subject Static and dynamic structure factors es_ES
dc.subject Sum rules es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Sum rules and exact inequalities for strongly coupled one-component plasmas es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/ctpp.201700136 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministry of Education and Science of the Republic of Kazakhstan//AP05132677/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministry of Education and Science of the Republic of Kazakhstan//AP05132333/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministry of Education and Science of the Republic of Kazakhstan//BR05236730/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//BO1366-10/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ESP2013-41078-R/ES/DESARROLLO Y CARACTERIZACION DE UN SISTEMA HIBRIDO DE PROPULSION ESPACIAL POR PLASMA DE BAJO CONSUMO ELECTRICO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Arkhipov, Y.; Ashikbayeva, A.; Askaruly, A.; Bonitz, M.; Conde, L.; Davletov, A.; Dornheim, T.... (2018). Sum rules and exact inequalities for strongly coupled one-component plasmas. Contributions to Plasma Physics. 58(10):967-975. https://doi.org/10.1002/ctpp.201700136 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/ctpp.201700136 es_ES
dc.description.upvformatpinicio 967 es_ES
dc.description.upvformatpfin 975 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 58 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\372085 es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministry of Education and Science, República de Kazajistán es_ES
dc.description.references Ross, J. S., Higginson, D. P., Ryutov, D., Fiuza, F., Hatarik, R., Huntington, C. M., … Park, H.-S. (2017). Transition from Collisional to Collisionless Regimes in Interpenetrating Plasma Flows on the National Ignition Facility. Physical Review Letters, 118(18). doi:10.1103/physrevlett.118.185003 es_ES
dc.description.references Daligault, J. (2017). Crossover from Classical to Fermi Liquid Behavior in Dense Plasmas. Physical Review Letters, 119(4). doi:10.1103/physrevlett.119.045002 es_ES
dc.description.references Murillo, M. S. (2004). Strongly coupled plasma physics and high energy-density matter. Physics of Plasmas, 11(5), 2964-2971. doi:10.1063/1.1652853 es_ES
dc.description.references Killian, T. C., Pattard, T., Pohl, T., & Rost, J. M. (2007). Ultracold neutral plasmas. Physics Reports, 449(4-5), 77-130. doi:10.1016/j.physrep.2007.04.007 es_ES
dc.description.references Daligault, J., Baalrud, S. D., Starrett, C. E., Saumon, D., & Sjostrom, T. (2016). Ionic Transport Coefficients of Dense Plasmas without Molecular Dynamics. Physical Review Letters, 116(7). doi:10.1103/physrevlett.116.075002 es_ES
dc.description.references Mithen, J. P., Daligault, J., Crowley, B. J. B., & Gregori, G. (2011). Density fluctuations in the Yukawa one-component plasma: An accurate model for the dynamical structure factor. Physical Review E, 84(4). doi:10.1103/physreve.84.046401 es_ES
dc.description.references Mithen, J. P., Daligault, J., & Gregori, G. (2012). Comparative merits of the memory function and dynamic local-field correction of the classical one-component plasma. Physical Review E, 85(5). doi:10.1103/physreve.85.056407 es_ES
dc.description.references Hansen, J.-P., McDonald, I. R., & Pollock, E. L. (1975). Statistical mechanics of dense ionized matter. III. Dynamical properties of the classical one-component plasma. Physical Review A, 11(3), 1025-1039. doi:10.1103/physreva.11.1025 es_ES
dc.description.references Mermin, N. D. (1970). Lindhard Dielectric Function in the Relaxation-Time Approximation. Physical Review B, 1(5), 2362-2363. doi:10.1103/physrevb.1.2362 es_ES
dc.description.references Arkhipov, Y. V., Ashikbayeva, A. B., Askaruly, A., Davletov, A. E., & Tkachenko, I. M. (2014). Dielectric function of dense plasmas, their stopping power, and sum rules. Physical Review E, 90(5). doi:10.1103/physreve.90.053102 es_ES
dc.description.references Dornheim, T., Schoof, T., Groth, S., Filinov, A., & Bonitz, M. (2015). Permutation blocking path integral Monte Carlo approach to the uniform electron gas at finite temperature. The Journal of Chemical Physics, 143(20), 204101. doi:10.1063/1.4936145 es_ES
dc.description.references J. Ortner V.M. Rylyuk Tkachenko I. M. 50 1994 4937 Phys. Rev. E 1998 es_ES
dc.description.references Varentsov, D., Tkachenko, I. M., & Hoffmann, D. H. H. (2005). Statistical approach to beam shaping. Physical Review E, 71(6). doi:10.1103/physreve.71.066501 es_ES
dc.description.references Ballester, D., & Tkachenko, I. M. (2008). Fast-Projectile Stopping Power of Quantal Multicomponent Strongly Coupled Plasmas. Physical Review Letters, 101(7). doi:10.1103/physrevlett.101.075002 es_ES
dc.description.references Kreĭn, M., & Nudel′man, A. (1977). The Markov Moment Problem and Extremal Problems. Translations of Mathematical Monographs. doi:10.1090/mmono/050 es_ES
dc.description.references Hong, J., & Lee, M. H. (1985). Exact Dynamically Convergent Calculations of the Frequency-Dependent Density Response Function. Physical Review Letters, 55(22), 2375-2378. doi:10.1103/physrevlett.55.2375 es_ES
dc.description.references Arkhipov, Y. V., Askaruly, A., Davletov, A. E., Dubovtsev, D. Y., Donkó, Z., Hartmann, P., … Tkachenko, I. M. (2017). Direct Determination of Dynamic Properties of Coulomb and Yukawa Classical One-Component Plasmas. Physical Review Letters, 119(4). doi:10.1103/physrevlett.119.045001 es_ES
dc.description.references I. M. Tkachenko Yu. V. Arkhipov A. B. Ashikbayeva A. Askaruly L. Conde A. E. Davletov Z. Donkó D. Yu. Dubovtsev P. Hartmann I. Korolov S. Syzganbayeva Int. Conf. Strongly Coupled Coulomb Systems 81 es_ES
dc.description.references Kwong, N.-H., & Bonitz, M. (2000). Real-Time Kadanoff-Baym Approach to Plasma Oscillations in a Correlated Electron Gas. Physical Review Letters, 84(8), 1768-1771. doi:10.1103/physrevlett.84.1768 es_ES
dc.description.references Kugler, A. A. (1975). Theory of the local field correction in an electron gas. Journal of Statistical Physics, 12(1), 35-87. doi:10.1007/bf01024183 es_ES
dc.description.references Adamjan, S. V., Tkachenko, I. M., Muñoz-Cobo González, J. L., & Verdú Martín, G. (1993). Dynamic and static correlations in model Coulomb systems. Physical Review E, 48(3), 2067-2072. doi:10.1103/physreve.48.2067 es_ES
dc.description.references Arkhipov, Y. V., Askaruly, A., Ballester, D., Davletov, A. E., Tkachenko, I. M., & Zwicknagel, G. (2010). Dynamic properties of one-component strongly coupled plasmas: The sum-rule approach. Physical Review E, 81(2). doi:10.1103/physreve.81.026402 es_ES
dc.description.references Tkachenko, I. M. (1996). Limiting properties of the radial distribution function in electronic liquids. Journal of Physics A: Mathematical and General, 29(10), 2599-2605. doi:10.1088/0305-4470/29/10/034 es_ES
dc.description.references Stringfellow, G. S., DeWitt, H. E., & Slattery, W. L. (1990). Equation of state of the one-component plasma derived from precision Monte Carlo calculations. Physical Review A, 41(2), 1105-1111. doi:10.1103/physreva.41.1105 es_ES
dc.description.references Contini, V., Mazzone, G., & Sacchetti, F. (1986). Static properties of a uniform electron gas: A phenomenological approach. Physical Review B, 33(2), 712-718. doi:10.1103/physrevb.33.712 es_ES
dc.description.references Singwi, K. S., Sjölander, A., Tosi, M. P., & Land, R. H. (1970). Electron Correlations at Metallic Densities. IV. Physical Review B, 1(3), 1044-1053. doi:10.1103/physrevb.1.1044 es_ES
dc.description.references Ng, K. (1974). Hypernetted chain solutions for the classical one‐component plasma up to Γ=7000. The Journal of Chemical Physics, 61(7), 2680-2689. doi:10.1063/1.1682399 es_ES
dc.description.references Faussurier, G., & Murillo, M. S. (2003). Gibbs-Bogolyubov inequality and transport properties for strongly coupled Yukawa fluids. Physical Review E, 67(4). doi:10.1103/physreve.67.046404 es_ES
dc.description.references Faussurier, G. (2004). Description of strongly coupled Yukawa fluids using the variational modified hypernetted chain approach. Physical Review E, 69(6). doi:10.1103/physreve.69.066402 es_ES
dc.description.references Desbiens, N., Arnault, P., & Clérouin, J. (2016). Parametrization of pair correlation function and static structure factor of the one component plasma across coupling regimes. Physics of Plasmas, 23(9), 092120. doi:10.1063/1.4963388 es_ES
dc.description.references Iyetomi, H., Ogata, S., & Ichimaru, S. (1992). Bridge functions and improvement on the hypernetted-chain approximation for classical one-component plasmas. Physical Review A, 46(2), 1051-1058. doi:10.1103/physreva.46.1051 es_ES
dc.description.references Young, D. A., Corey, E. M., & DeWitt, H. E. (1991). Analytic fit to the one-component-plasma structure factor. Physical Review A, 44(10), 6508-6512. doi:10.1103/physreva.44.6508 es_ES
dc.description.references Dornheim, T., Groth, S., & Bonitz, M. (2017). Ab initio results for the static structure factor of the warm dense electron gas. Contributions to Plasma Physics, 57(10), 468-478. doi:10.1002/ctpp.201700096 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem