- -

Sum rules and exact inequalities for strongly coupled one-component plasmas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sum rules and exact inequalities for strongly coupled one-component plasmas

Mostrar el registro completo del ítem

Arkhipov, Y.; Ashikbayeva, A.; Askaruly, A.; Bonitz, M.; Conde, L.; Davletov, A.; Dornheim, T.... (2018). Sum rules and exact inequalities for strongly coupled one-component plasmas. Contributions to Plasma Physics. 58(10):967-975. https://doi.org/10.1002/ctpp.201700136

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/146165

Ficheros en el ítem

Metadatos del ítem

Título: Sum rules and exact inequalities for strongly coupled one-component plasmas
Autor: Arkhipov, Yu.V. Ashikbayeva, A.B. Askaruly, A. Bonitz, M. Conde, L. Davletov, A.E. Dornheim, T. Dubovtsev, D.Yu. Groth, S. Santybayev, Kh. Syzganbayeva, S.A. Tkachenko Gorski, Igor Mijail
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Several sum rules and other exact relations are employed to determine both the static and the dynamic properties of strongly coupled, partially and completely degenerate one-component plasmas. Emphasis is placed on ...[+]
Palabras clave: Method of moments , Static and dynamic structure factors , Sum rules
Derechos de uso: Cerrado
Fuente:
Contributions to Plasma Physics. (issn: 0863-1042 )
DOI: 10.1002/ctpp.201700136
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/ctpp.201700136
Código del Proyecto:
info:eu-repo/grantAgreement/Ministry of Education and Science of the Republic of Kazakhstan//AP05132677/
info:eu-repo/grantAgreement/Ministry of Education and Science of the Republic of Kazakhstan//AP05132333/
info:eu-repo/grantAgreement/Ministry of Education and Science of the Republic of Kazakhstan//BR05236730/
info:eu-repo/grantAgreement/DFG//BO1366-10/
info:eu-repo/grantAgreement/MINECO//ESP2013-41078-R/ES/DESARROLLO Y CARACTERIZACION DE UN SISTEMA HIBRIDO DE PROPULSION ESPACIAL POR PLASMA DE BAJO CONSUMO ELECTRICO/
Agradecimientos:
This research was supported by Grants PTsF‐BR05236730, AP05132333 and AP05132677 (Ministry of Education and Science, Kazakhstan), No. BO1366-10 (Deutsche Forschungsgemeinschaft, Germany), and Grant No. ESP2013-41078R ...[+]
Tipo: Artículo

References

Ross, J. S., Higginson, D. P., Ryutov, D., Fiuza, F., Hatarik, R., Huntington, C. M., … Park, H.-S. (2017). Transition from Collisional to Collisionless Regimes in Interpenetrating Plasma Flows on the National Ignition Facility. Physical Review Letters, 118(18). doi:10.1103/physrevlett.118.185003

Daligault, J. (2017). Crossover from Classical to Fermi Liquid Behavior in Dense Plasmas. Physical Review Letters, 119(4). doi:10.1103/physrevlett.119.045002

Murillo, M. S. (2004). Strongly coupled plasma physics and high energy-density matter. Physics of Plasmas, 11(5), 2964-2971. doi:10.1063/1.1652853 [+]
Ross, J. S., Higginson, D. P., Ryutov, D., Fiuza, F., Hatarik, R., Huntington, C. M., … Park, H.-S. (2017). Transition from Collisional to Collisionless Regimes in Interpenetrating Plasma Flows on the National Ignition Facility. Physical Review Letters, 118(18). doi:10.1103/physrevlett.118.185003

Daligault, J. (2017). Crossover from Classical to Fermi Liquid Behavior in Dense Plasmas. Physical Review Letters, 119(4). doi:10.1103/physrevlett.119.045002

Murillo, M. S. (2004). Strongly coupled plasma physics and high energy-density matter. Physics of Plasmas, 11(5), 2964-2971. doi:10.1063/1.1652853

Killian, T. C., Pattard, T., Pohl, T., & Rost, J. M. (2007). Ultracold neutral plasmas. Physics Reports, 449(4-5), 77-130. doi:10.1016/j.physrep.2007.04.007

Daligault, J., Baalrud, S. D., Starrett, C. E., Saumon, D., & Sjostrom, T. (2016). Ionic Transport Coefficients of Dense Plasmas without Molecular Dynamics. Physical Review Letters, 116(7). doi:10.1103/physrevlett.116.075002

Mithen, J. P., Daligault, J., Crowley, B. J. B., & Gregori, G. (2011). Density fluctuations in the Yukawa one-component plasma: An accurate model for the dynamical structure factor. Physical Review E, 84(4). doi:10.1103/physreve.84.046401

Mithen, J. P., Daligault, J., & Gregori, G. (2012). Comparative merits of the memory function and dynamic local-field correction of the classical one-component plasma. Physical Review E, 85(5). doi:10.1103/physreve.85.056407

Hansen, J.-P., McDonald, I. R., & Pollock, E. L. (1975). Statistical mechanics of dense ionized matter. III. Dynamical properties of the classical one-component plasma. Physical Review A, 11(3), 1025-1039. doi:10.1103/physreva.11.1025

Mermin, N. D. (1970). Lindhard Dielectric Function in the Relaxation-Time Approximation. Physical Review B, 1(5), 2362-2363. doi:10.1103/physrevb.1.2362

Arkhipov, Y. V., Ashikbayeva, A. B., Askaruly, A., Davletov, A. E., & Tkachenko, I. M. (2014). Dielectric function of dense plasmas, their stopping power, and sum rules. Physical Review E, 90(5). doi:10.1103/physreve.90.053102

Dornheim, T., Schoof, T., Groth, S., Filinov, A., & Bonitz, M. (2015). Permutation blocking path integral Monte Carlo approach to the uniform electron gas at finite temperature. The Journal of Chemical Physics, 143(20), 204101. doi:10.1063/1.4936145

J. Ortner V.M. Rylyuk Tkachenko I. M. 50 1994 4937 Phys. Rev. E 1998

Varentsov, D., Tkachenko, I. M., & Hoffmann, D. H. H. (2005). Statistical approach to beam shaping. Physical Review E, 71(6). doi:10.1103/physreve.71.066501

Ballester, D., & Tkachenko, I. M. (2008). Fast-Projectile Stopping Power of Quantal Multicomponent Strongly Coupled Plasmas. Physical Review Letters, 101(7). doi:10.1103/physrevlett.101.075002

Kreĭn, M., & Nudel′man, A. (1977). The Markov Moment Problem and Extremal Problems. Translations of Mathematical Monographs. doi:10.1090/mmono/050

Hong, J., & Lee, M. H. (1985). Exact Dynamically Convergent Calculations of the Frequency-Dependent Density Response Function. Physical Review Letters, 55(22), 2375-2378. doi:10.1103/physrevlett.55.2375

Arkhipov, Y. V., Askaruly, A., Davletov, A. E., Dubovtsev, D. Y., Donkó, Z., Hartmann, P., … Tkachenko, I. M. (2017). Direct Determination of Dynamic Properties of Coulomb and Yukawa Classical One-Component Plasmas. Physical Review Letters, 119(4). doi:10.1103/physrevlett.119.045001

I. M. Tkachenko Yu. V. Arkhipov A. B. Ashikbayeva A. Askaruly L. Conde A. E. Davletov Z. Donkó D. Yu. Dubovtsev P. Hartmann I. Korolov S. Syzganbayeva Int. Conf. Strongly Coupled Coulomb Systems 81

Kwong, N.-H., & Bonitz, M. (2000). Real-Time Kadanoff-Baym Approach to Plasma Oscillations in a Correlated Electron Gas. Physical Review Letters, 84(8), 1768-1771. doi:10.1103/physrevlett.84.1768

Kugler, A. A. (1975). Theory of the local field correction in an electron gas. Journal of Statistical Physics, 12(1), 35-87. doi:10.1007/bf01024183

Adamjan, S. V., Tkachenko, I. M., Muñoz-Cobo González, J. L., & Verdú Martín, G. (1993). Dynamic and static correlations in model Coulomb systems. Physical Review E, 48(3), 2067-2072. doi:10.1103/physreve.48.2067

Arkhipov, Y. V., Askaruly, A., Ballester, D., Davletov, A. E., Tkachenko, I. M., & Zwicknagel, G. (2010). Dynamic properties of one-component strongly coupled plasmas: The sum-rule approach. Physical Review E, 81(2). doi:10.1103/physreve.81.026402

Tkachenko, I. M. (1996). Limiting properties of the radial distribution function in electronic liquids. Journal of Physics A: Mathematical and General, 29(10), 2599-2605. doi:10.1088/0305-4470/29/10/034

Stringfellow, G. S., DeWitt, H. E., & Slattery, W. L. (1990). Equation of state of the one-component plasma derived from precision Monte Carlo calculations. Physical Review A, 41(2), 1105-1111. doi:10.1103/physreva.41.1105

Contini, V., Mazzone, G., & Sacchetti, F. (1986). Static properties of a uniform electron gas: A phenomenological approach. Physical Review B, 33(2), 712-718. doi:10.1103/physrevb.33.712

Singwi, K. S., Sjölander, A., Tosi, M. P., & Land, R. H. (1970). Electron Correlations at Metallic Densities. IV. Physical Review B, 1(3), 1044-1053. doi:10.1103/physrevb.1.1044

Ng, K. (1974). Hypernetted chain solutions for the classical one‐component plasma up to Γ=7000. The Journal of Chemical Physics, 61(7), 2680-2689. doi:10.1063/1.1682399

Faussurier, G., & Murillo, M. S. (2003). Gibbs-Bogolyubov inequality and transport properties for strongly coupled Yukawa fluids. Physical Review E, 67(4). doi:10.1103/physreve.67.046404

Faussurier, G. (2004). Description of strongly coupled Yukawa fluids using the variational modified hypernetted chain approach. Physical Review E, 69(6). doi:10.1103/physreve.69.066402

Desbiens, N., Arnault, P., & Clérouin, J. (2016). Parametrization of pair correlation function and static structure factor of the one component plasma across coupling regimes. Physics of Plasmas, 23(9), 092120. doi:10.1063/1.4963388

Iyetomi, H., Ogata, S., & Ichimaru, S. (1992). Bridge functions and improvement on the hypernetted-chain approximation for classical one-component plasmas. Physical Review A, 46(2), 1051-1058. doi:10.1103/physreva.46.1051

Young, D. A., Corey, E. M., & DeWitt, H. E. (1991). Analytic fit to the one-component-plasma structure factor. Physical Review A, 44(10), 6508-6512. doi:10.1103/physreva.44.6508

Dornheim, T., Groth, S., & Bonitz, M. (2017). Ab initio results for the static structure factor of the warm dense electron gas. Contributions to Plasma Physics, 57(10), 468-478. doi:10.1002/ctpp.201700096

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem