- -

Directional k-Step Newton Methods in n Variables and its Semilocal Convergence Analysis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Directional k-Step Newton Methods in n Variables and its Semilocal Convergence Analysis

Show full item record

Kumar, A.; Gupta, D.; Martínez Molada, E.; Singh, S. (2018). Directional k-Step Newton Methods in n Variables and its Semilocal Convergence Analysis. Mediterranean Journal of Mathematics. 15(2):15-34. https://doi.org/10.1007/s00009-018-1077-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/146171

Files in this item

Item Metadata

Title: Directional k-Step Newton Methods in n Variables and its Semilocal Convergence Analysis
Author: Kumar, A. Gupta, D.K. Martínez Molada, Eulalia Singh, Sukhjit
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] The directional k-step Newton methods (k a positive integer) is developed for solving a single nonlinear equation in n variables. Its semilocal convergence analysis is established by using two different approaches ...[+]
Subjects: Directional Newton methods , Recurrent relations , Recurrent functions , Majorizing sequences , Semilocal convergence analysis
Copyrigths: Reserva de todos los derechos
Source:
Mediterranean Journal of Mathematics. (issn: 1660-5446 )
DOI: 10.1007/s00009-018-1077-0
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s00009-018-1077-0
Thanks:
The authors thank the referees for their fruitful suggestions which have uncovered several weaknesses leading to the improvement in the paper. A. Kumar wishes to thank UGC-CSIR(Grant no. 2061441001), New Delhi and IIT ...[+]
Type: Artículo

This item appears in the following Collection(s)

Show full item record