Mostrar el registro sencillo del ítem
dc.contributor.author | Kumar, A. | es_ES |
dc.contributor.author | Gupta, D.K. | es_ES |
dc.contributor.author | Martínez Molada, Eulalia | es_ES |
dc.contributor.author | Singh, Sukhjit | es_ES |
dc.date.accessioned | 2020-06-12T03:33:35Z | |
dc.date.available | 2020-06-12T03:33:35Z | |
dc.date.issued | 2018-04 | es_ES |
dc.identifier.issn | 1660-5446 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146171 | |
dc.description.abstract | [EN] The directional k-step Newton methods (k a positive integer) is developed for solving a single nonlinear equation in n variables. Its semilocal convergence analysis is established by using two different approaches (recurrent relations and recurrent functions) under the assumption that the first derivative satisfies a combination of the Lipschitz and the center-Lipschitz continuity conditions instead of only Lipschitz condition. The convergence theorems for the existence and uniqueness of the solution for each of them are established. Numerical examples including nonlinear Hammerstein-type integral equations are worked out and significantly improved results are obtained. It is shown that the second approach based on recurrent functions solves problems failed to be solved by first one using recurrent relations. This demonstrates the efficacy and applicability of these approaches. This work extends the directional one and two-step Newton methods for solving a single nonlinear equation in n variables. Their semilocal convergence analysis using majorizing sequences are studied in Levin (Math Comput 71(237): 251-262, 2002) and Ioannis (Num Algorithms 55(4): 503-528, 2010) under the assumption that the first derivative satisfies the Lipschitz and the combination of the Lipschitz and the center-Lipschitz continuity conditions, respectively. Finally, the computational order of convergence and the computational efficiency of developed method are studied. | es_ES |
dc.description.sponsorship | The authors thank the referees for their fruitful suggestions which have uncovered several weaknesses leading to the improvement in the paper. A. Kumar wishes to thank UGC-CSIR(Grant no. 2061441001), New Delhi and IIT Kharagpur, India, for their financial assistance during this work. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Mediterranean Journal of Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Directional Newton methods | es_ES |
dc.subject | Recurrent relations | es_ES |
dc.subject | Recurrent functions | es_ES |
dc.subject | Majorizing sequences | es_ES |
dc.subject | Semilocal convergence analysis | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Directional k-Step Newton Methods in n Variables and its Semilocal Convergence Analysis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00009-018-1077-0 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CSIR//2061441001/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Kumar, A.; Gupta, D.; Martínez Molada, E.; Singh, S. (2018). Directional k-Step Newton Methods in n Variables and its Semilocal Convergence Analysis. Mediterranean Journal of Mathematics. 15(2):15-34. https://doi.org/10.1007/s00009-018-1077-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00009-018-1077-0 | es_ES |
dc.description.upvformatpinicio | 15 | es_ES |
dc.description.upvformatpfin | 34 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\368483 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Indian Institute of Technology Delhi | es_ES |
dc.contributor.funder | Indian Institute of Technology Kharagpur | es_ES |
dc.contributor.funder | Council of Scientific and Industrial Research, India | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Levin, Y., Ben-Israel, A.: Directional Newton methods in n variables. Math. Comput. 71(237), 251–262 (2002) | es_ES |
dc.description.references | Argyros, I.K., Hilout, S.: A convergence analysis for directional two-step Newton methods. Num. Algorithms 55(4), 503–528 (2010) | es_ES |
dc.description.references | Lukács, G.: The generalized inverse matrix and the surface-surface intersection problem. In: Theory and Practice of Geometric Modeling, pp. 167–185. Springer (1989) | es_ES |
dc.description.references | Argyros, I.K., Magreñán, Á.A.: Extending the applicability of Gauss–Newton method for convex composite optimization on Riemannian manifolds. Appl. Math. Comput. 249, 453–467 (2014) | es_ES |
dc.description.references | Argyros, I.K.: A semilocal convergence analysis for directional Newton methods. Math. Comput. 80(273), 327–343 (2011) | es_ES |
dc.description.references | Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. SIAM (2000) | es_ES |
dc.description.references | Argyros, I.K., Hilout, S.: Weaker conditions for the convergence of Newton’s method. J. Complex. 28(3), 364–387 (2012) | es_ES |
dc.description.references | Argyros, I.K., Hilout, S.: On an improved convergence analysis of Newton’s method. Appl. Math. Comput. 225, 372–386 (2013) | es_ES |
dc.description.references | Tapia, R.A.: The Kantorovich theorem for Newton’s method. Am. Math. Mon. 78(4), 389–392 (1971) | es_ES |
dc.description.references | Argyros, I.K., George, S.: Local convergence for some high convergence order Newton-like methods with frozen derivatives. SeMA J. 70(1), 47–59 (2015) | es_ES |
dc.description.references | Martínez, E., Singh, S., Hueso, J.L., Gupta, D.K.: Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Appl. Math. Comput. 281, 252–265 (2016) | es_ES |
dc.description.references | Argyros, I.K., Behl, R. Motsa,S.S.: Ball convergence for a family of quadrature-based methods for solving equations in banach Space. Int. J. Comput. Methods, pp. 1750017 (2016) | es_ES |
dc.description.references | Parhi, S.K., Gupta, D.K.: Convergence of Stirling’s method under weak differentiability condition. Math. Methods Appl. Sci. 34(2), 168–175 (2011) | es_ES |
dc.description.references | Prashanth, M., Gupta, D.K.: A continuation method and its convergence for solving nonlinear equations in Banach spaces. Int. J. Comput. Methods 10(04), 1350021 (2013) | es_ES |
dc.description.references | Parida, P.K., Gupta, D.K.: Recurrence relations for semilocal convergence of a Newton-like method in banach spaces. J. Math. Anal. Appl. 345(1), 350–361 (2008) | es_ES |
dc.description.references | Argyros, I.K., Hilout, S.: Convergence of Directional Methods under mild differentiability and applications. Appl. Math. Comput. 217(21), 8731–8746 (2011) | es_ES |
dc.description.references | Amat, S, Bermúdez, C., Hernández-Verón, M.A., Martínez, E.: On an efficient k-step iterative method for nonlinear equations. J. Comput. Appl. Math. 302, 258–271 (2016) | es_ES |
dc.description.references | Hernández-Verón, M.A., Martínez, E., Teruel, C.: Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems. Num. Algorithms, pp. 1–23 | es_ES |
dc.description.references | Argyros, M., Hernández, I.K., Hilout, S., Romero, N.: Directional Chebyshev-type methods for solving equations. Math. Comput. 84(292), 815–830 (2015) | es_ES |
dc.description.references | Davis, P.J., Rabinowitz, P.: Methods of numerical integration. Courier Corporation (2007) | es_ES |
dc.description.references | Cordero, A, Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Computation . 190(1), 686–698 (2007) | es_ES |
dc.description.references | Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13(8), 87–93 (2000) | es_ES |