- -

Directional k-Step Newton Methods in n Variables and its Semilocal Convergence Analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Directional k-Step Newton Methods in n Variables and its Semilocal Convergence Analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kumar, A. es_ES
dc.contributor.author Gupta, D.K. es_ES
dc.contributor.author Martínez Molada, Eulalia es_ES
dc.contributor.author Singh, Sukhjit es_ES
dc.date.accessioned 2020-06-12T03:33:35Z
dc.date.available 2020-06-12T03:33:35Z
dc.date.issued 2018-04 es_ES
dc.identifier.issn 1660-5446 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146171
dc.description.abstract [EN] The directional k-step Newton methods (k a positive integer) is developed for solving a single nonlinear equation in n variables. Its semilocal convergence analysis is established by using two different approaches (recurrent relations and recurrent functions) under the assumption that the first derivative satisfies a combination of the Lipschitz and the center-Lipschitz continuity conditions instead of only Lipschitz condition. The convergence theorems for the existence and uniqueness of the solution for each of them are established. Numerical examples including nonlinear Hammerstein-type integral equations are worked out and significantly improved results are obtained. It is shown that the second approach based on recurrent functions solves problems failed to be solved by first one using recurrent relations. This demonstrates the efficacy and applicability of these approaches. This work extends the directional one and two-step Newton methods for solving a single nonlinear equation in n variables. Their semilocal convergence analysis using majorizing sequences are studied in Levin (Math Comput 71(237): 251-262, 2002) and Ioannis (Num Algorithms 55(4): 503-528, 2010) under the assumption that the first derivative satisfies the Lipschitz and the combination of the Lipschitz and the center-Lipschitz continuity conditions, respectively. Finally, the computational order of convergence and the computational efficiency of developed method are studied. es_ES
dc.description.sponsorship The authors thank the referees for their fruitful suggestions which have uncovered several weaknesses leading to the improvement in the paper. A. Kumar wishes to thank UGC-CSIR(Grant no. 2061441001), New Delhi and IIT Kharagpur, India, for their financial assistance during this work. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Mediterranean Journal of Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Directional Newton methods es_ES
dc.subject Recurrent relations es_ES
dc.subject Recurrent functions es_ES
dc.subject Majorizing sequences es_ES
dc.subject Semilocal convergence analysis es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Directional k-Step Newton Methods in n Variables and its Semilocal Convergence Analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00009-018-1077-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSIR//2061441001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Kumar, A.; Gupta, D.; Martínez Molada, E.; Singh, S. (2018). Directional k-Step Newton Methods in n Variables and its Semilocal Convergence Analysis. Mediterranean Journal of Mathematics. 15(2):15-34. https://doi.org/10.1007/s00009-018-1077-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00009-018-1077-0 es_ES
dc.description.upvformatpinicio 15 es_ES
dc.description.upvformatpfin 34 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\368483 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Indian Institute of Technology Delhi es_ES
dc.contributor.funder Indian Institute of Technology Kharagpur es_ES
dc.contributor.funder Council of Scientific and Industrial Research, India es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Levin, Y., Ben-Israel, A.: Directional Newton methods in n variables. Math. Comput. 71(237), 251–262 (2002) es_ES
dc.description.references Argyros, I.K., Hilout, S.: A convergence analysis for directional two-step Newton methods. Num. Algorithms 55(4), 503–528 (2010) es_ES
dc.description.references Lukács, G.: The generalized inverse matrix and the surface-surface intersection problem. In: Theory and Practice of Geometric Modeling, pp. 167–185. Springer (1989) es_ES
dc.description.references Argyros, I.K., Magreñán, Á.A.: Extending the applicability of Gauss–Newton method for convex composite optimization on Riemannian manifolds. Appl. Math. Comput. 249, 453–467 (2014) es_ES
dc.description.references Argyros, I.K.: A semilocal convergence analysis for directional Newton methods. Math. Comput. 80(273), 327–343 (2011) es_ES
dc.description.references Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. SIAM (2000) es_ES
dc.description.references Argyros, I.K., Hilout, S.: Weaker conditions for the convergence of Newton’s method. J. Complex. 28(3), 364–387 (2012) es_ES
dc.description.references Argyros, I.K., Hilout, S.: On an improved convergence analysis of Newton’s method. Appl. Math. Comput. 225, 372–386 (2013) es_ES
dc.description.references Tapia, R.A.: The Kantorovich theorem for Newton’s method. Am. Math. Mon. 78(4), 389–392 (1971) es_ES
dc.description.references Argyros, I.K., George, S.: Local convergence for some high convergence order Newton-like methods with frozen derivatives. SeMA J. 70(1), 47–59 (2015) es_ES
dc.description.references Martínez, E., Singh, S., Hueso, J.L., Gupta, D.K.: Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Appl. Math. Comput. 281, 252–265 (2016) es_ES
dc.description.references Argyros, I.K., Behl, R. Motsa,S.S.: Ball convergence for a family of quadrature-based methods for solving equations in banach Space. Int. J. Comput. Methods, pp. 1750017 (2016) es_ES
dc.description.references Parhi, S.K., Gupta, D.K.: Convergence of Stirling’s method under weak differentiability condition. Math. Methods Appl. Sci. 34(2), 168–175 (2011) es_ES
dc.description.references Prashanth, M., Gupta, D.K.: A continuation method and its convergence for solving nonlinear equations in Banach spaces. Int. J. Comput. Methods 10(04), 1350021 (2013) es_ES
dc.description.references Parida, P.K., Gupta, D.K.: Recurrence relations for semilocal convergence of a Newton-like method in banach spaces. J. Math. Anal. Appl. 345(1), 350–361 (2008) es_ES
dc.description.references Argyros, I.K., Hilout, S.: Convergence of Directional Methods under mild differentiability and applications. Appl. Math. Comput. 217(21), 8731–8746 (2011) es_ES
dc.description.references Amat, S, Bermúdez, C., Hernández-Verón, M.A., Martínez, E.: On an efficient k-step iterative method for nonlinear equations. J. Comput. Appl. Math. 302, 258–271 (2016) es_ES
dc.description.references Hernández-Verón, M.A., Martínez, E., Teruel, C.: Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems. Num. Algorithms, pp. 1–23 es_ES
dc.description.references Argyros, M., Hernández, I.K., Hilout, S., Romero, N.: Directional Chebyshev-type methods for solving equations. Math. Comput. 84(292), 815–830 (2015) es_ES
dc.description.references Davis, P.J., Rabinowitz, P.: Methods of numerical integration. Courier Corporation (2007) es_ES
dc.description.references Cordero, A, Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Computation . 190(1), 686–698 (2007) es_ES
dc.description.references Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13(8), 87–93 (2000) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem