- -

Experimental and computational study of conductivity of multilayer graphene in polypropylene nanocomposites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental and computational study of conductivity of multilayer graphene in polypropylene nanocomposites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author del Castillo, Roxana M. es_ES
dc.contributor.author del Castillo, Luis F. es_ES
dc.contributor.author Calles, Alipio G. es_ES
dc.contributor.author Compañ Moreno, Vicente es_ES
dc.date.accessioned 2020-06-12T03:33:54Z
dc.date.available 2020-06-12T03:33:54Z
dc.date.issued 2018-07-21 es_ES
dc.identifier.issn 2050-7526 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146179
dc.description.abstract [EN] We study the electric conductivity of compounds formed by multilayer graphene in polypropylene. Our study makes a comparative analysis between the experimental and computational results. To obtain an experimental measurement of the electronic properties, we deposited multilayer graphene (MLG) nanoparticles over a polypropylene matrix. The deposition was made over several stages, in which we added to the polymer matrix different percentages of MLG nanoparticles using the melt compounding technique, and we studied the conductivities of the nanocomposites by means of electrochemical impedance spectroscopy (EIS). The second part consists of computational calculations, in which we studied the electronic properties of a graphene sheet under a polypropylene molecule with different slabs in the monomer. In both analyses, there is a strong percolation phenomenon with a percolation threshold of around 18% of the MLG nanoparticles. Before the percolation threshold, the charge carriers are constrained in the polypropylene molecule, making the system an insulating material and creating p-type doping. After the percolation threshold, the charge carriers are constrained in the graphene, making the system a conductor material and creating n-type doping with conductivity values of around 20 S m(-1). This phenomenon is a consequence of a change in the mechanism of charge transfer in the interface between the polypropylene molecule and graphene sheet. To describe the charge transfer mechanism, it is necessary to consider the quantum effect. The incorporation of the quantum effects and the percolation phenomenon make it possible for the theoretical conductivity to be close to the conductivity measured experimentally. es_ES
dc.description.sponsorship This research has been supported by the ENE/2015-69203-R project, granted by the Ministerio de Economia y Competitividad (MINECO), Spain. Also, the authors are grateful to UNAM-DGAPA-PAPIIT projects IG 100618 y IG 114818, DGTIC-UNAM for access to the Miztli-UNAM supercomputer LANCAD-UNAM-DGTIC-055, and UNAM-DGAPA for the Postdoctoral grant for Roxana M. del Castillo. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Journal of Materials Chemistry C es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Experimental and computational study of conductivity of multilayer graphene in polypropylene nanocomposites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8tc01135d es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//IG100618/MX/Separación adsortiva de olefinas y parafinas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//IG114818/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Del Castillo, RM.; Del Castillo, LF.; Calles, AG.; Compañ Moreno, V. (2018). Experimental and computational study of conductivity of multilayer graphene in polypropylene nanocomposites. Journal of Materials Chemistry C. 6:7232-7241. https://doi.org/10.1039/c8tc01135d es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8tc01135d es_ES
dc.description.upvformatpinicio 7232 es_ES
dc.description.upvformatpfin 7241 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.relation.pasarela S\372356 es_ES
dc.contributor.funder Universidad Nacional Autónoma de México es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references H. G. Karian , Handbook of polypropylene and polypropylene composites , RheTec, Inc. , Whitmore Lake, Michigan , 2nd edn, 2003 , https://books.google.es/books?hl=es&lr=&id=C0nzeNPUpoIC&oi=fnd&pg=PP1&dq=Handbook+of+polypropylene+and+polypropylene+composites&ots=LYqYBYg45n&sig=3gtYXigr8_O8CUJeefBCtGI7QXA#v=onepage&q=Handbook%20of%20polypropylene%20and%20polypropylene%20composites&f=false es_ES
dc.description.references Rath, T., & Li, Y. (2011). Nanocomposites based on polystyrene-b-poly(ethylene-r-butylene)-b-polystyrene and exfoliated graphite nanoplates: Effect of nanoplatelet loading on morphology and mechanical properties. Composites Part A: Applied Science and Manufacturing, 42(12), 1995-2002. doi:10.1016/j.compositesa.2011.09.002 es_ES
dc.description.references Kim, M.-S., Yan, J., Kang, K.-M., Joo, K.-H., Kang, Y.-J., & Ahn, S.-H. (2013). Soundproofing ability and mechanical properties of polypropylene/exfoliated graphite nanoplatelet/carbon nanotube (PP/xGnP/CNT) composite. International Journal of Precision Engineering and Manufacturing, 14(6), 1087-1092. doi:10.1007/s12541-013-0146-3 es_ES
dc.description.references Zhang, K., Yu, H.-O., Shi, Y.-D., Chen, Y.-F., Zeng, J.-B., Guo, J., … Wang, M. (2017). Morphological regulation improved electrical conductivity and electromagnetic interference shielding in poly(l-lactide)/poly(ε-caprolactone)/carbon nanotube nanocomposites via constructing stereocomplex crystallites. Journal of Materials Chemistry C, 5(11), 2807-2817. doi:10.1039/c7tc00389g es_ES
dc.description.references Mohd Radzuan, N. A., Yusuf Zakaria, M., Sulong, A. B., & Sahari, J. (2017). The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites. Composites Part B: Engineering, 110, 153-160. doi:10.1016/j.compositesb.2016.11.021 es_ES
dc.description.references Li, Q., Yao, F.-Z., Liu, Y., Zhang, G., Wang, H., & Wang, Q. (2018). High-Temperature Dielectric Materials for Electrical Energy Storage. Annual Review of Materials Research, 48(1), 219-243. doi:10.1146/annurev-matsci-070317-124435 es_ES
dc.description.references Qiao, Y., Yin, X., Zhu, T., Li, H., & Tang, C. (2018). Dielectric polymers with novel chemistry, compositions and architectures. Progress in Polymer Science, 80, 153-162. doi:10.1016/j.progpolymsci.2018.01.003 es_ES
dc.description.references Rosehr, A., & Luinstra, G. A. (2017). Polypropylene composites with finely dispersed multi-walled carbon nanotubes covered with an aluminum oxide shell. Polymer, 120, 164-175. doi:10.1016/j.polymer.2017.05.045 es_ES
dc.description.references Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., … Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146(9-10), 351-355. doi:10.1016/j.ssc.2008.02.024 es_ES
dc.description.references Banszerus, L., Schmitz, M., Engels, S., Goldsche, M., Watanabe, K., Taniguchi, T., … Stampfer, C. (2016). Ballistic Transport Exceeding 28 μm in CVD Grown Graphene. Nano Letters, 16(2), 1387-1391. doi:10.1021/acs.nanolett.5b04840 es_ES
dc.description.references Terrés, B., Chizhova, L. A., Libisch, F., Peiro, J., Jörger, D., Engels, S., … Stampfer, C. (2016). Size quantization of Dirac fermions in graphene constrictions. Nature Communications, 7(1). doi:10.1038/ncomms11528 es_ES
dc.description.references Zhang, H.-B., Zheng, W.-G., Yan, Q., Yang, Y., Wang, J.-W., Lu, Z.-H., … Yu, Z.-Z. (2010). Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer, 51(5), 1191-1196. doi:10.1016/j.polymer.2010.01.027 es_ES
dc.description.references Chung, D. D. L. (2015). A review of exfoliated graphite. Journal of Materials Science, 51(1), 554-568. doi:10.1007/s10853-015-9284-6 es_ES
dc.description.references T. Bayerl , A.Benedito , A.Gallegos , G. B.Mitschang and B.Galindo , Melting of Polymer-Polymer Composites by Particulate Heating Promoters and Electromagnetic Radiation , in Synthetic Polymer-Polymer Composites , ed. D. Bhattacharyya and S. Fakirov , Carl HanserVerlag GmbH & Co. KG , 2012 , ch. 24, pp. 39–64 10.3139/9781569905258.002 es_ES
dc.description.references Harper, J., Price, D., & Zhang, J. (2005). Use of Fillers to Enable the Microwave Processing of Polyethylene. Journal of Microwave Power and Electromagnetic Energy, 40(4), 219-227. doi:10.1080/08327823.2005.11688543 es_ES
dc.description.references Galindo, B., Benedito, A., Gimenez, E., & Compañ, V. (2016). Comparative study between the microwave heating efficiency of carbon nanotubes versus multilayer graphene in polypropylene nanocomposites. Composites Part B: Engineering, 98, 330-338. doi:10.1016/j.compositesb.2016.04.082 es_ES
dc.description.references Asadi, K., Kronemeijer, A. J., Cramer, T., Jan Anton Koster, L., Blom, P. W. M., & de Leeuw, D. M. (2013). Polaron hopping mediated by nuclear tunnelling in semiconducting polymers at high carrier density. Nature Communications, 4(1). doi:10.1038/ncomms2708 es_ES
dc.description.references Fan, Z., Gong, F., Nguyen, S. T., & Duong, H. M. (2015). Advanced multifunctional graphene aerogel – Poly (methyl methacrylate) composites: Experiments and modeling. Carbon, 81, 396-404. doi:10.1016/j.carbon.2014.09.072 es_ES
dc.description.references Zabihi, Z., & Araghi, H. (2016). Monte Carlo simulations of effective electrical conductivity of graphene/poly(methyl methacrylate) nanocomposite: Landauer-Buttiker approach. Synthetic Metals, 217, 87-93. doi:10.1016/j.synthmet.2016.03.024 es_ES
dc.description.references Xia, X., Zhong, Z., & Weng, G. J. (2017). Maxwell–Wagner–Sillars mechanism in the frequency dependence of electrical conductivity and dielectric permittivity of graphene-polymer nanocomposites. Mechanics of Materials, 109, 42-50. doi:10.1016/j.mechmat.2017.03.014 es_ES
dc.description.references F. M. Bickelhaupt and E. J.Baerends , Kohn–Sham Density Functional Theory: Predicting and Understanding Chemistry . in Reviews in Computational Chemistry , 2007 , ed. K. B. Lipkowitz and B. Boyd Donald , John Wiley & Sons, Inc. , vol. 15, pp. 1–89 10.1002/9780470125922.ch1/summary es_ES
dc.description.references Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865 es_ES
dc.description.references Methfessel, M., & Paxton, A. T. (1989). High-precision sampling for Brillouin-zone integration in metals. Physical Review B, 40(6), 3616-3621. doi:10.1103/physrevb.40.3616 es_ES
dc.description.references Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188 es_ES
dc.description.references Files: C.pbe-van_ak.UPF, H.pbe-van_ak.UPF, N.pbe-van_ak.UPF, and O.pbe-van_ak.UPF, http://www.quantum-espresso.org es_ES
dc.description.references Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892-7895. doi:10.1103/physrevb.41.7892 es_ES
dc.description.references Sørensen, T. S., & Compañ, V. (1995). Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc., Faraday Trans., 91(23), 4235-4250. doi:10.1039/ft9959104235 es_ES
dc.description.references Drüschler, M., Huber, B., & Roling, B. (2011). On Capacitive Processes at the Interface between 1-Ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate and Au(111). The Journal of Physical Chemistry C, 115(14), 6802-6808. doi:10.1021/jp200395j es_ES
dc.description.references Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301 es_ES
dc.description.references F. Kremer and A.Schoenhals , Broadban Dielectric Spectroscopy , Springer , Berlin , 2003 es_ES
dc.description.references Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700 es_ES
dc.description.references Macdonald, J. R. (1953). Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes. Physical Review, 92(1), 4-17. doi:10.1103/physrev.92.4 es_ES
dc.description.references Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638 es_ES
dc.description.references Greenhoe, B. M., Hassan, M. K., Wiggins, J. S., & Mauritz, K. A. (2016). Universal power law behavior of the AC conductivity versus frequency of agglomerate morphologies in conductive carbon nanotube-reinforced epoxy networks. Journal of Polymer Science Part B: Polymer Physics, 54(19), 1918-1923. doi:10.1002/polb.24121 es_ES
dc.description.references Novoselov, K. S. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666-669. doi:10.1126/science.1102896 es_ES
dc.description.references Del Castillo, R. M., & Sansores, L. E. (2015). Study of the electronic structure of Ag, Au, Pt and Pd clusters adsorption on graphene and their effect on conductivity. The European Physical Journal B, 88(10). doi:10.1140/epjb/e2015-60001-2 es_ES
dc.description.references Galpaya, D., Wang, M., Liu, M., Motta, N., Waclawik, E., & Yan, C. (2012). Recent Advances in Fabrication and Characterization of Graphene-Polymer Nanocomposites. Graphene, 01(02), 30-49. doi:10.4236/graphene.2012.12005 es_ES
dc.description.references I. Zvyagin . Charge Transport via Delocalized States in Disordered Materials . in Charge Transport in Disordered Solids with Applications in Electronics , ed. S. Baranovsky , John Wiley & Sons, Inc. , 2006 , pp. 1–48 10.1002/0470095067.ch1/summary es_ES
dc.description.references Leenaerts, O., Partoens, B., & Peeters, F. M. (2009). Adsorption of small molecules on graphene. Microelectronics Journal, 40(4-5), 860-862. doi:10.1016/j.mejo.2008.11.022 es_ES
dc.description.references Hashemi, R., & Weng, G. J. (2016). A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon, 96, 474-490. doi:10.1016/j.carbon.2015.09.103 es_ES
dc.description.references Xia, X., Wang, Y., Zhong, Z., & Weng, G. J. (2017). A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites. Carbon, 111, 221-230. doi:10.1016/j.carbon.2016.09.078 es_ES
dc.description.references The determination of the elastic field of an ellipsoidal inclusion, and related problems. (1957). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 241(1226), 376-396. doi:10.1098/rspa.1957.0133 es_ES
dc.description.references Trotta, S., Marmo, F., & Rosati, L. (2017). Evaluation of the Eshelby tensor for polygonal inclusions. Composites Part B: Engineering, 115, 170-181. doi:10.1016/j.compositesb.2016.10.018 es_ES
dc.description.references L. D. Landau , E. M.Lifshitz and L. P.Pitaevskii , Electrodynamics of Continuous Media , Pergamon Press , New York , 3rd edn, 1984 es_ES
dc.description.references Wang, Y., Weng, G. J., Meguid, S. A., & Hamouda, A. M. (2014). A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites. Journal of Applied Physics, 115(19), 193706. doi:10.1063/1.4878195 es_ES
dc.description.references Wang, Y., Shan, J. W., & Weng, G. J. (2015). Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. Journal of Applied Physics, 118(6), 065101. doi:10.1063/1.4928293 es_ES
dc.description.references Wehling, T. O., Yuan, S., Lichtenstein, A. I., Geim, A. K., & Katsnelson, M. I. (2010). Resonant Scattering by Realistic Impurities in Graphene. Physical Review Letters, 105(5). doi:10.1103/physrevlett.105.056802 es_ES
dc.description.references Stauber, T., Peres, N. M. R., & Guinea, F. (2007). Electronic transport in graphene: A semiclassical approach including midgap states. Physical Review B, 76(20). doi:10.1103/physrevb.76.205423 es_ES
dc.description.references R. M. Del Castillo and L. E.Sansores . Adsorption of Metal Clusters on Graphene and Their Effect on the Electrical Conductivity , in Graphene Materials – Advanced Applications , ed. G. Z. Kyzas and A. C. Mitropoulos , INTECH , 2017 , https://www.intechopen.com/books/graphene-materials-advanced-applications/adsorption-of-metal-clusters-on-graphene-and-their-effect-on-the-electrical-conductivity es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem