- -

Experimental and computational study of conductivity of multilayer graphene in polypropylene nanocomposites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental and computational study of conductivity of multilayer graphene in polypropylene nanocomposites

Mostrar el registro completo del ítem

Del Castillo, RM.; Del Castillo, LF.; Calles, AG.; Compañ Moreno, V. (2018). Experimental and computational study of conductivity of multilayer graphene in polypropylene nanocomposites. Journal of Materials Chemistry C. 6:7232-7241. https://doi.org/10.1039/c8tc01135d

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/146179

Ficheros en el ítem

Metadatos del ítem

Título: Experimental and computational study of conductivity of multilayer graphene in polypropylene nanocomposites
Autor: del Castillo, Roxana M. del Castillo, Luis F. Calles, Alipio G. Compañ Moreno, Vicente
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] We study the electric conductivity of compounds formed by multilayer graphene in polypropylene. Our study makes a comparative analysis between the experimental and computational results. To obtain an experimental ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Materials Chemistry C. (issn: 2050-7526 )
DOI: 10.1039/c8tc01135d
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c8tc01135d
Código del Proyecto:
info:eu-repo/grantAgreement/UNAM//IG100618/MX/Separación adsortiva de olefinas y parafinas/
info:eu-repo/grantAgreement/UNAM//IG114818/
info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/
Agradecimientos:
This research has been supported by the ENE/2015-69203-R project, granted by the Ministerio de Economia y Competitividad (MINECO), Spain. Also, the authors are grateful to UNAM-DGAPA-PAPIIT projects IG 100618 y IG 114818, ...[+]
Tipo: Artículo

References

H. G. Karian , Handbook of polypropylene and polypropylene composites , RheTec, Inc. , Whitmore Lake, Michigan , 2nd edn, 2003 , https://books.google.es/books?hl=es&lr=&id=C0nzeNPUpoIC&oi=fnd&pg=PP1&dq=Handbook+of+polypropylene+and+polypropylene+composites&ots=LYqYBYg45n&sig=3gtYXigr8_O8CUJeefBCtGI7QXA#v=onepage&q=Handbook%20of%20polypropylene%20and%20polypropylene%20composites&f=false

Rath, T., & Li, Y. (2011). Nanocomposites based on polystyrene-b-poly(ethylene-r-butylene)-b-polystyrene and exfoliated graphite nanoplates: Effect of nanoplatelet loading on morphology and mechanical properties. Composites Part A: Applied Science and Manufacturing, 42(12), 1995-2002. doi:10.1016/j.compositesa.2011.09.002

Kim, M.-S., Yan, J., Kang, K.-M., Joo, K.-H., Kang, Y.-J., & Ahn, S.-H. (2013). Soundproofing ability and mechanical properties of polypropylene/exfoliated graphite nanoplatelet/carbon nanotube (PP/xGnP/CNT) composite. International Journal of Precision Engineering and Manufacturing, 14(6), 1087-1092. doi:10.1007/s12541-013-0146-3 [+]
H. G. Karian , Handbook of polypropylene and polypropylene composites , RheTec, Inc. , Whitmore Lake, Michigan , 2nd edn, 2003 , https://books.google.es/books?hl=es&lr=&id=C0nzeNPUpoIC&oi=fnd&pg=PP1&dq=Handbook+of+polypropylene+and+polypropylene+composites&ots=LYqYBYg45n&sig=3gtYXigr8_O8CUJeefBCtGI7QXA#v=onepage&q=Handbook%20of%20polypropylene%20and%20polypropylene%20composites&f=false

Rath, T., & Li, Y. (2011). Nanocomposites based on polystyrene-b-poly(ethylene-r-butylene)-b-polystyrene and exfoliated graphite nanoplates: Effect of nanoplatelet loading on morphology and mechanical properties. Composites Part A: Applied Science and Manufacturing, 42(12), 1995-2002. doi:10.1016/j.compositesa.2011.09.002

Kim, M.-S., Yan, J., Kang, K.-M., Joo, K.-H., Kang, Y.-J., & Ahn, S.-H. (2013). Soundproofing ability and mechanical properties of polypropylene/exfoliated graphite nanoplatelet/carbon nanotube (PP/xGnP/CNT) composite. International Journal of Precision Engineering and Manufacturing, 14(6), 1087-1092. doi:10.1007/s12541-013-0146-3

Zhang, K., Yu, H.-O., Shi, Y.-D., Chen, Y.-F., Zeng, J.-B., Guo, J., … Wang, M. (2017). Morphological regulation improved electrical conductivity and electromagnetic interference shielding in poly(l-lactide)/poly(ε-caprolactone)/carbon nanotube nanocomposites via constructing stereocomplex crystallites. Journal of Materials Chemistry C, 5(11), 2807-2817. doi:10.1039/c7tc00389g

Mohd Radzuan, N. A., Yusuf Zakaria, M., Sulong, A. B., & Sahari, J. (2017). The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites. Composites Part B: Engineering, 110, 153-160. doi:10.1016/j.compositesb.2016.11.021

Li, Q., Yao, F.-Z., Liu, Y., Zhang, G., Wang, H., & Wang, Q. (2018). High-Temperature Dielectric Materials for Electrical Energy Storage. Annual Review of Materials Research, 48(1), 219-243. doi:10.1146/annurev-matsci-070317-124435

Qiao, Y., Yin, X., Zhu, T., Li, H., & Tang, C. (2018). Dielectric polymers with novel chemistry, compositions and architectures. Progress in Polymer Science, 80, 153-162. doi:10.1016/j.progpolymsci.2018.01.003

Rosehr, A., & Luinstra, G. A. (2017). Polypropylene composites with finely dispersed multi-walled carbon nanotubes covered with an aluminum oxide shell. Polymer, 120, 164-175. doi:10.1016/j.polymer.2017.05.045

Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., … Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146(9-10), 351-355. doi:10.1016/j.ssc.2008.02.024

Banszerus, L., Schmitz, M., Engels, S., Goldsche, M., Watanabe, K., Taniguchi, T., … Stampfer, C. (2016). Ballistic Transport Exceeding 28 μm in CVD Grown Graphene. Nano Letters, 16(2), 1387-1391. doi:10.1021/acs.nanolett.5b04840

Terrés, B., Chizhova, L. A., Libisch, F., Peiro, J., Jörger, D., Engels, S., … Stampfer, C. (2016). Size quantization of Dirac fermions in graphene constrictions. Nature Communications, 7(1). doi:10.1038/ncomms11528

Zhang, H.-B., Zheng, W.-G., Yan, Q., Yang, Y., Wang, J.-W., Lu, Z.-H., … Yu, Z.-Z. (2010). Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer, 51(5), 1191-1196. doi:10.1016/j.polymer.2010.01.027

Chung, D. D. L. (2015). A review of exfoliated graphite. Journal of Materials Science, 51(1), 554-568. doi:10.1007/s10853-015-9284-6

T. Bayerl , A.Benedito , A.Gallegos , G. B.Mitschang and B.Galindo , Melting of Polymer-Polymer Composites by Particulate Heating Promoters and Electromagnetic Radiation , in Synthetic Polymer-Polymer Composites , ed. D. Bhattacharyya and S. Fakirov , Carl HanserVerlag GmbH & Co. KG , 2012 , ch. 24, pp. 39–64 10.3139/9781569905258.002

Harper, J., Price, D., & Zhang, J. (2005). Use of Fillers to Enable the Microwave Processing of Polyethylene. Journal of Microwave Power and Electromagnetic Energy, 40(4), 219-227. doi:10.1080/08327823.2005.11688543

Galindo, B., Benedito, A., Gimenez, E., & Compañ, V. (2016). Comparative study between the microwave heating efficiency of carbon nanotubes versus multilayer graphene in polypropylene nanocomposites. Composites Part B: Engineering, 98, 330-338. doi:10.1016/j.compositesb.2016.04.082

Asadi, K., Kronemeijer, A. J., Cramer, T., Jan Anton Koster, L., Blom, P. W. M., & de Leeuw, D. M. (2013). Polaron hopping mediated by nuclear tunnelling in semiconducting polymers at high carrier density. Nature Communications, 4(1). doi:10.1038/ncomms2708

Fan, Z., Gong, F., Nguyen, S. T., & Duong, H. M. (2015). Advanced multifunctional graphene aerogel – Poly (methyl methacrylate) composites: Experiments and modeling. Carbon, 81, 396-404. doi:10.1016/j.carbon.2014.09.072

Zabihi, Z., & Araghi, H. (2016). Monte Carlo simulations of effective electrical conductivity of graphene/poly(methyl methacrylate) nanocomposite: Landauer-Buttiker approach. Synthetic Metals, 217, 87-93. doi:10.1016/j.synthmet.2016.03.024

Xia, X., Zhong, Z., & Weng, G. J. (2017). Maxwell–Wagner–Sillars mechanism in the frequency dependence of electrical conductivity and dielectric permittivity of graphene-polymer nanocomposites. Mechanics of Materials, 109, 42-50. doi:10.1016/j.mechmat.2017.03.014

F. M. Bickelhaupt and E. J.Baerends , Kohn–Sham Density Functional Theory: Predicting and Understanding Chemistry . in Reviews in Computational Chemistry , 2007 , ed. K. B. Lipkowitz and B. Boyd Donald , John Wiley & Sons, Inc. , vol. 15, pp. 1–89 10.1002/9780470125922.ch1/summary

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865

Methfessel, M., & Paxton, A. T. (1989). High-precision sampling for Brillouin-zone integration in metals. Physical Review B, 40(6), 3616-3621. doi:10.1103/physrevb.40.3616

Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188

Files: C.pbe-van_ak.UPF, H.pbe-van_ak.UPF, N.pbe-van_ak.UPF, and O.pbe-van_ak.UPF, http://www.quantum-espresso.org

Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892-7895. doi:10.1103/physrevb.41.7892

Sørensen, T. S., & Compañ, V. (1995). Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc., Faraday Trans., 91(23), 4235-4250. doi:10.1039/ft9959104235

Drüschler, M., Huber, B., & Roling, B. (2011). On Capacitive Processes at the Interface between 1-Ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate and Au(111). The Journal of Physical Chemistry C, 115(14), 6802-6808. doi:10.1021/jp200395j

Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301

F. Kremer and A.Schoenhals , Broadban Dielectric Spectroscopy , Springer , Berlin , 2003

Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700

Macdonald, J. R. (1953). Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes. Physical Review, 92(1), 4-17. doi:10.1103/physrev.92.4

Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638

Greenhoe, B. M., Hassan, M. K., Wiggins, J. S., & Mauritz, K. A. (2016). Universal power law behavior of the AC conductivity versus frequency of agglomerate morphologies in conductive carbon nanotube-reinforced epoxy networks. Journal of Polymer Science Part B: Polymer Physics, 54(19), 1918-1923. doi:10.1002/polb.24121

Novoselov, K. S. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666-669. doi:10.1126/science.1102896

Del Castillo, R. M., & Sansores, L. E. (2015). Study of the electronic structure of Ag, Au, Pt and Pd clusters adsorption on graphene and their effect on conductivity. The European Physical Journal B, 88(10). doi:10.1140/epjb/e2015-60001-2

Galpaya, D., Wang, M., Liu, M., Motta, N., Waclawik, E., & Yan, C. (2012). Recent Advances in Fabrication and Characterization of Graphene-Polymer Nanocomposites. Graphene, 01(02), 30-49. doi:10.4236/graphene.2012.12005

I. Zvyagin . Charge Transport via Delocalized States in Disordered Materials . in Charge Transport in Disordered Solids with Applications in Electronics , ed. S. Baranovsky , John Wiley & Sons, Inc. , 2006 , pp. 1–48 10.1002/0470095067.ch1/summary

Leenaerts, O., Partoens, B., & Peeters, F. M. (2009). Adsorption of small molecules on graphene. Microelectronics Journal, 40(4-5), 860-862. doi:10.1016/j.mejo.2008.11.022

Hashemi, R., & Weng, G. J. (2016). A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon, 96, 474-490. doi:10.1016/j.carbon.2015.09.103

Xia, X., Wang, Y., Zhong, Z., & Weng, G. J. (2017). A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites. Carbon, 111, 221-230. doi:10.1016/j.carbon.2016.09.078

The determination of the elastic field of an ellipsoidal inclusion, and related problems. (1957). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 241(1226), 376-396. doi:10.1098/rspa.1957.0133

Trotta, S., Marmo, F., & Rosati, L. (2017). Evaluation of the Eshelby tensor for polygonal inclusions. Composites Part B: Engineering, 115, 170-181. doi:10.1016/j.compositesb.2016.10.018

L. D. Landau , E. M.Lifshitz and L. P.Pitaevskii , Electrodynamics of Continuous Media , Pergamon Press , New York , 3rd edn, 1984

Wang, Y., Weng, G. J., Meguid, S. A., & Hamouda, A. M. (2014). A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites. Journal of Applied Physics, 115(19), 193706. doi:10.1063/1.4878195

Wang, Y., Shan, J. W., & Weng, G. J. (2015). Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. Journal of Applied Physics, 118(6), 065101. doi:10.1063/1.4928293

Wehling, T. O., Yuan, S., Lichtenstein, A. I., Geim, A. K., & Katsnelson, M. I. (2010). Resonant Scattering by Realistic Impurities in Graphene. Physical Review Letters, 105(5). doi:10.1103/physrevlett.105.056802

Stauber, T., Peres, N. M. R., & Guinea, F. (2007). Electronic transport in graphene: A semiclassical approach including midgap states. Physical Review B, 76(20). doi:10.1103/physrevb.76.205423

R. M. Del Castillo and L. E.Sansores . Adsorption of Metal Clusters on Graphene and Their Effect on the Electrical Conductivity , in Graphene Materials – Advanced Applications , ed. G. Z. Kyzas and A. C. Mitropoulos , INTECH , 2017 , https://www.intechopen.com/books/graphene-materials-advanced-applications/adsorption-of-metal-clusters-on-graphene-and-their-effect-on-the-electrical-conductivity

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem