- -

Simultaneous boron ion-channel/growth factor receptor activation for enhanced vascularization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Simultaneous boron ion-channel/growth factor receptor activation for enhanced vascularization

Mostrar el registro completo del ítem

Rico Tortosa, PM.; Rodrigo Navarro, A.; La Peña Del Rivero, MD.; Moulisova, V.; Costell, M.; Salmerón Sánchez, M. (2018). Simultaneous boron ion-channel/growth factor receptor activation for enhanced vascularization. Advanced Biosystems. 3(1):1-12. https://doi.org/10.1002/adbi.201800220

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/146286

Ficheros en el ítem

Metadatos del ítem

Título: Simultaneous boron ion-channel/growth factor receptor activation for enhanced vascularization
Autor: Rico Tortosa, Patricia María Rodrigo Navarro, Aleixandre La Peña Del Rivero, Marcos De Moulisova, Vladimira Costell, Mercedes Salmerón Sánchez, Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Fecha difusión:
Resumen:
[EN] Boron ion is essential in metabolism and its concentration is regulated by ion-channel NaBC1. NaBC1 mutations cause corneal dystrophies such as Harboyan syndrome. Here we propose a 3D molecular model for NaBC1 and ...[+]
Palabras clave: NaBC1 , Boron ion , VEGF , Vascularization , Fibronectin , Integrins
Derechos de uso: Reserva de todos los derechos
Fuente:
Advanced Biosystems. (eissn: 2366-7478 )
DOI: 10.1002/adbi.201800220
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/adbi.201800220
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/306990/EU/Material-driven Fibronectin Fibrillogenesis to Engineer Synergistic Growth Factor Microenvironments/
info:eu-repo/grantAgreement/UKRI//EP%2FP001114%2F1/GB/Engineering growth factor microenvironments - a new therapeutic paradigm for regenerative medicine/
info:eu-repo/grantAgreement/MINECO//MAT2015-69315-C3-1-R/ES/SOPORTES CELULARES BIODEGRADABLES CARGADOS CON IONES BIOACTIVOS PARA REGENERACION MUSCULAR/
Agradecimientos:
P.R. acknowledges support from the Ministerio de Economia, Industria y Competitividad, Gobierno de Espana (MINECO) (MAT2015-69315-C3-1-R), and European Regional Development Fund (FEDER). CIBER-BBN is an initiative funded ...[+]
Tipo: Artículo

References

Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., & Holash, J. (2000). Vascular-specific growth factors and blood vessel formation. Nature, 407(6801), 242-248. doi:10.1038/35025215

Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature, 438(7070), 932-936. doi:10.1038/nature04478

Moulisová, V., Gonzalez-García, C., Cantini, M., Rodrigo-Navarro, A., Weaver, J., Costell, M., … Salmerón-Sánchez, M. (2017). Engineered microenvironments for synergistic VEGF – Integrin signalling during vascularization. Biomaterials, 126, 61-74. doi:10.1016/j.biomaterials.2017.02.024 [+]
Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., & Holash, J. (2000). Vascular-specific growth factors and blood vessel formation. Nature, 407(6801), 242-248. doi:10.1038/35025215

Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature, 438(7070), 932-936. doi:10.1038/nature04478

Moulisová, V., Gonzalez-García, C., Cantini, M., Rodrigo-Navarro, A., Weaver, J., Costell, M., … Salmerón-Sánchez, M. (2017). Engineered microenvironments for synergistic VEGF – Integrin signalling during vascularization. Biomaterials, 126, 61-74. doi:10.1016/j.biomaterials.2017.02.024

Briquez, P. S., Clegg, L. E., Martino, M. M., Gabhann, F. M., & Hubbell, J. A. (2016). Design principles for therapeutic angiogenic materials. Nature Reviews Materials, 1(1). doi:10.1038/natrevmats.2015.6

Hanft, J. R., Pollak, R. A., Barbul, A., Gils, C. va., Kwon, P. S., Gray, S. M., … Breen, T. J. (2008). Phase I trial on the safety of topical rhVEGF on chronic neuropathic diabetic foot ulcers. Journal of Wound Care, 17(1), 30-37. doi:10.12968/jowc.2008.17.1.27917

Woo, E. J. (2012). Recombinant human bone morphogenetic protein-2: adverse events reported to the Manufacturer and User Facility Device Experience database. The Spine Journal, 12(10), 894-899. doi:10.1016/j.spinee.2012.09.052

United States Food and Drug Administration Product Description Regranex https://www.fda.gov/downloads/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/UCM142821.avi (accessed: May2008).

Carmeliet, P., & Jain, R. K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473(7347), 298-307. doi:10.1038/nature10144

Hynes, R. O. (2002). Integrins. Cell, 110(6), 673-687. doi:10.1016/s0092-8674(02)00971-6

Mahabeleshwar, G. H., Feng, W., Reddy, K., Plow, E. F., & Byzova, T. V. (2007). Mechanisms of Integrin–Vascular Endothelial Growth Factor Receptor Cross-Activation in Angiogenesis. Circulation Research, 101(6), 570-580. doi:10.1161/circresaha.107.155655

Olsson, A.-K., Dimberg, A., Kreuger, J., & Claesson-Welsh, L. (2006). VEGF receptor signalling ? in control of vascular function. Nature Reviews Molecular Cell Biology, 7(5), 359-371. doi:10.1038/nrm1911

Alexander, R. A., Prager, G. W., Mihaly-Bison, J., Uhrin, P., Sunzenauer, S., Binder, B. R., … Breuss, J. M. (2012). VEGF-induced endothelial cell migration requires urokinase receptor (uPAR)-dependent integrin redistribution. Cardiovascular Research, 94(1), 125-135. doi:10.1093/cvr/cvs017

Herkenne, S., Paques, C., Nivelles, O., Lion, M., Bajou, K., Pollenus, T., … Struman, I. (2015). The interaction of uPAR with VEGFR2 promotes VEGF-induced angiogenesis. Science Signaling, 8(403), ra117-ra117. doi:10.1126/scisignal.aaa2403

Lauritzen, I., Chemin, J., Honoré, E., Jodar, M., Guy, N., Lazdunski, M., & Jane Patel, A. (2005). Cross‐talk between the mechano‐gated K 2P channel TREK‐1 and the actin cytoskeleton. EMBO reports, 6(7), 642-648. doi:10.1038/sj.embor.7400449

Gasparski, A. N., & Beningo, K. A. (2015). Mechanoreception at the cell membrane: More than the integrins. Archives of Biochemistry and Biophysics, 586, 20-26. doi:10.1016/j.abb.2015.07.017

Munaron, L., Genova, T., Avanzato, D., Antoniotti, S., & Fiorio Pla, A. (2012). Targeting Calcium Channels to Block Tumor Vascularization. Recent Patents on Anti-Cancer Drug Discovery, 8(1), 27-37. doi:10.2174/1574892811308010027

Yao, X., & Garland, C. J. (2005). Recent Developments in Vascular Endothelial Cell Transient Receptor Potential Channels. Circulation Research, 97(9), 853-863. doi:10.1161/01.res.0000187473.85419.3e

Rico, P., Rodrigo-Navarro, A., & Salmerón-Sánchez, M. (2015). Borax-Loaded PLLA for Promotion of Myogenic Differentiation. Tissue Engineering Part A, 21(21-22), 2662-2672. doi:10.1089/ten.tea.2015.0044

Park, M., Li, Q., Shcheynikov, N., Zeng, W., & Muallem, S. (2004). NaBC1 Is a Ubiquitous Electrogenic Na+-Coupled Borate Transporter Essential for Cellular Boron Homeostasis and Cell Growth and Proliferation. Molecular Cell, 16(3), 331-341. doi:10.1016/j.molcel.2004.09.030

Vithana, E. N., Morgan, P., Sundaresan, P., Ebenezer, N. D., Tan, D. T. H., Mohamed, M. D., … Aung, T. (2006). Mutations in sodium-borate cotransporter SLC4A11 cause recessive congenital hereditary endothelial dystrophy (CHED2). Nature Genetics, 38(7), 755-757. doi:10.1038/ng1824

Lopez, I. A., Rosenblatt, M. I., Kim, C., Galbraith, G. C., Jones, S. M., Kao, L., … Kurtz, I. (2009). Slc4a11Gene Disruption in Mice. Journal of Biological Chemistry, 284(39), 26882-26896. doi:10.1074/jbc.m109.008102

Parker, M. D., Ourmozdi, E. P., & Tanner, M. J. A. (2001). Human BTR1, a New Bicarbonate Transporter Superfamily Member and Human AE4 from Kidney. Biochemical and Biophysical Research Communications, 282(5), 1103-1109. doi:10.1006/bbrc.2001.4692

Zangi, R., & Filella, M. (2012). Transport routes of metalloids into and out of the cell: A review of the current knowledge. Chemico-Biological Interactions, 197(1), 47-57. doi:10.1016/j.cbi.2012.02.001

Tanjore, H., Zeisberg, E. M., Gerami-Naini, B., & Kalluri, R. (2007). β1 integrin expression on endothelial cells is required for angiogenesis but not for vasculogenesis. Developmental Dynamics, 237(1), 75-82. doi:10.1002/dvdy.21385

Gerber, H.-P., Dixit, V., & Ferrara, N. (1998). Vascular Endothelial Growth Factor Induces Expression of the Antiapoptotic Proteins Bcl-2 and A1 in Vascular Endothelial Cells. Journal of Biological Chemistry, 273(21), 13313-13316. doi:10.1074/jbc.273.21.13313

Tan, C., Cruet-Hennequart, S., Troussard, A., Fazli, L., Costello, P., Sutton, K., … Dedhar, S. (2004). Regulation of tumor angiogenesis by integrin-linked kinase (ILK). Cancer Cell, 5(1), 79-90. doi:10.1016/s1535-6108(03)00281-2

George, E. L., Baldwin, H. S., & Hynes, R. O. (1997). Fibronectins Are Essential for Heart and Blood Vessel Morphogenesis But Are Dispensable for Initial Specification of Precursor Cells. Blood, 90(8), 3073-3081. doi:10.1182/blood.v90.8.3073

Fassler, R., & Meyer, M. (1995). Consequences of lack of beta 1 integrin gene expression in mice. Genes & Development, 9(15), 1896-1908. doi:10.1101/gad.9.15.1896

Soldi, R., Mitola, S., Strasly, M., Defilippi, P., Tarone, G., & Bussolino, F. (1999). Role of αvβ3 integrin in the activation of vascular endothelial growth factor receptor-2. The EMBO Journal, 18(4), 882-892. doi:10.1093/emboj/18.4.882

Takahashi, S., Leiss, M., Moser, M., Ohashi, T., Kitao, T., Heckmann, D., … Fässler, R. (2007). The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. Journal of Cell Biology, 178(1), 167-178. doi:10.1083/jcb.200703021

Ribatti, D. (2008). Chapter 5 Chick Embryo Chorioallantoic Membrane as a Useful Tool to Study Angiogenesis. International Review of Cell and Molecular Biology, 181-224. doi:10.1016/s1937-6448(08)01405-6

Novosel, E. C., Kleinhans, C., & Kluger, P. J. (2011). Vascularization is the key challenge in tissue engineering. Advanced Drug Delivery Reviews, 63(4-5), 300-311. doi:10.1016/j.addr.2011.03.004

García, J. R., & García, A. J. (2015). Biomaterial-mediated strategies targeting vascularization for bone repair. Drug Delivery and Translational Research, 6(2), 77-95. doi:10.1007/s13346-015-0236-0

Briquez, P. S., Hubbell, J. A., & Martino, M. M. (2015). Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing. Advances in Wound Care, 4(8), 479-489. doi:10.1089/wound.2014.0603

Simón-Yarza, T., Formiga, F. R., Tamayo, E., Pelacho, B., Prosper, F., & Blanco-Prieto, M. J. (2012). Vascular Endothelial Growth Factor-Delivery Systems for Cardiac Repair: An Overview. Theranostics, 2(6), 541-552. doi:10.7150/thno.3682

Kargozar, S., Baino, F., Hamzehlou, S., Hill, R. G., & Mozafari, M. (2018). Bioactive Glasses: Sprouting Angiogenesis in Tissue Engineering. Trends in Biotechnology, 36(4), 430-444. doi:10.1016/j.tibtech.2017.12.003

Laplante, M., & Sabatini, D. M. (2009). mTOR signaling at a glance. Journal of Cell Science, 122(20), 3589-3594. doi:10.1242/jcs.051011

Byzova, T. V., Goldman, C. K., Pampori, N., Thomas, K. A., Bett, A., Shattil, S. J., & Plow, E. F. (2000). A Mechanism for Modulation of Cellular Responses to VEGF. Molecular Cell, 6(4), 851-860. doi:10.1016/s1097-2765(05)00076-6

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem