- -

Inactivation of the microbiota and effect on the quality attributes of pineapple juice using a continuous flow ultrasound-assisted supercritical carbon dioxide system

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Inactivation of the microbiota and effect on the quality attributes of pineapple juice using a continuous flow ultrasound-assisted supercritical carbon dioxide system

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Paniagua-Martínez, Ingrid es_ES
dc.contributor.author Mulet Pons, Antonio es_ES
dc.contributor.author García Alvarado, Miguel Ángel es_ES
dc.contributor.author Benedito Fort, José Javier es_ES
dc.date.accessioned 2020-06-13T03:33:20Z
dc.date.available 2020-06-13T03:33:20Z
dc.date.issued 2018-10 es_ES
dc.identifier.issn 1082-0132 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146301
dc.description.abstract [EN] Supercritical carbon dioxide inactivation technology represents a promising nonthermal processing method, as it causes minimum impact on the nutritional food properties. The aim of this study was to analyze the combined effect of supercritical carbon dioxide and high-power ultrasound on the inactivation of natural microbiota and the quality attributes of pineapple juice treated in a continuous flow system. Different juice residence times (3.06-4.6min), at 100bar and 31.5?, were used. The results indicated that the microbiota inactivation was complete and the differences obtained in the quality attributes (2.2% for pH, 4.8% for degrees Brix, 2% for vitamin C) were minimal. During storage, microorganisms were not able to recover and the vitamin C decrease could be limited to 8.2% after four weeks. The results demonstrated that the supercritical carbon dioxide-high-power ultrasound technique could be an excellent alternative for the cold pasteurization of pineapple juice. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the PROMETEOII\2014\005 project financed by the Generalitat Valenciana (Conselleria d'Educacio, Cultura i Esport, Valencia, Spain). The authors acknowledge the Consejo Nacional de Ciencia y Tecnologia (CONACyT) for the scholarship awarded to PhD Student Paniagua-Martinez, I. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Food Science and Technology International es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonthermal process es_ES
dc.subject Supercritical carbon dioxide es_ES
dc.subject Ultrasound es_ES
dc.subject Pineapple juice es_ES
dc.subject Quality attributes es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Inactivation of the microbiota and effect on the quality attributes of pineapple juice using a continuous flow ultrasound-assisted supercritical carbon dioxide system es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1082013218774694 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F005/ES/Alimentos saludables y competitivos: intensificación de procesos de obtención%2Fpreservación de compuestos bioactivos. Secado e inactivación microbiana/enzimática asistida por ultrasonidos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Paniagua-Martínez, I.; Mulet Pons, A.; García Alvarado, MÁ.; Benedito Fort, JJ. (2018). Inactivation of the microbiota and effect on the quality attributes of pineapple juice using a continuous flow ultrasound-assisted supercritical carbon dioxide system. Food Science and Technology International. 24(7):547-554. https://doi.org/10.1177/1082013218774694 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1082013218774694 es_ES
dc.description.upvformatpinicio 547 es_ES
dc.description.upvformatpfin 554 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 7 es_ES
dc.identifier.pmid 29732916 es_ES
dc.relation.pasarela S\379096 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Adekunte, A. O., Tiwari, B. K., Cullen, P. J., Scannell, A. G. M., & O’Donnell, C. P. (2010). Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, 122(3), 500-507. doi:10.1016/j.foodchem.2010.01.026 es_ES
dc.description.references ARREOLA, A. G., BALABAN, M. O., MARSHALL, M. R., PEPLOW, A. J., WEI, C. I., & CORNELL, J. A. (1991). Supercritical Carbon Dioxide Effects on Some Quality Attributes of Single Strength Orange Juice. Journal of Food Science, 56(4), 1030-1033. doi:10.1111/j.1365-2621.1991.tb14634.x es_ES
dc.description.references Benedito, J., Ortuño, C., Castillo-Zamudio, R. I., & Mulet, A. (2015). Microbial Inactivation by Ultrasound Assisted Supercritical Fluids. Physics Procedia, 70, 824-827. doi:10.1016/j.phpro.2015.08.168 es_ES
dc.description.references Bermúdez-Aguirre, D., & Barbosa-Cánovas, G. V. (2012). Inactivation of Saccharomyces cerevisiae in pineapple, grape and cranberry juices under pulsed and continuous thermo-sonication treatments. Journal of Food Engineering, 108(3), 383-392. doi:10.1016/j.jfoodeng.2011.06.038 es_ES
dc.description.references Calvo, L., & Torres, E. (2010). Microbial inactivation of paprika using high-pressure CO2. The Journal of Supercritical Fluids, 52(1), 134-141. doi:10.1016/j.supflu.2009.11.002 es_ES
dc.description.references Char, C. D., Mitilinaki, E., Guerrero, S. N., & Alzamora, S. M. (2010). Use of High-Intensity Ultrasound and UV-C Light to Inactivate Some Microorganisms in Fruit Juices. Food and Bioprocess Technology, 3(6), 797-803. doi:10.1007/s11947-009-0307-7 es_ES
dc.description.references Choi, M. ., Kim, G. ., & Lee, H. . (2002). Effects of ascorbic acid retention on juice color and pigment stability in blood orange (Citrus sinensis) juice during refrigerated storage. Food Research International, 35(8), 753-759. doi:10.1016/s0963-9969(02)00071-6 es_ES
dc.description.references Costa, M. G. M., Fonteles, T. V., de Jesus, A. L. T., Almeida, F. D. L., de Miranda, M. R. A., Fernandes, F. A. N., & Rodrigues, S. (2011). High-Intensity Ultrasound Processing of Pineapple Juice. Food and Bioprocess Technology, 6(4), 997-1006. doi:10.1007/s11947-011-0746-9 es_ES
dc.description.references De Carvalho, L. M. J., de Castro, I. M., & da Silva, C. A. B. (2008). A study of retention of sugars in the process of clarification of pineapple juice (Ananas comosus, L. Merril) by micro- and ultra-filtration. Journal of Food Engineering, 87(4), 447-454. doi:10.1016/j.jfoodeng.2007.12.015 es_ES
dc.description.references Del Pozo-Insfran, D., Balaban, M. O., & Talcott, S. T. (2006). Microbial Stability, Phytochemical Retention, and Organoleptic Attributes of Dense Phase CO2Processed Muscadine Grape Juice. Journal of Agricultural and Food Chemistry, 54(15), 5468-5473. doi:10.1021/jf060854o es_ES
dc.description.references Fabroni, S., Amenta, M., Timpanaro, N., & Rapisarda, P. (2010). Supercritical carbon dioxide-treated blood orange juice as a new product in the fresh fruit juice market. Innovative Food Science & Emerging Technologies, 11(3), 477-484. doi:10.1016/j.ifset.2010.02.004 es_ES
dc.description.references FERIL, Jr., L. B., & KONDO, T. (2004). Biological Effects of Low Intensity Ultrasound: The Mechanism Involved, and its Implications on Therapy and on Biosafety of Ultrasound. Journal of Radiation Research, 45(4), 479-489. doi:10.1269/jrr.45.479 es_ES
dc.description.references Gao, Y., Nagy, B., Liu, X., Simándi, B., & Wang, Q. (2009). Supercritical CO2 extraction of lutein esters from marigold (Tagetes erecta L.) enhanced by ultrasound. The Journal of Supercritical Fluids, 49(3), 345-350. doi:10.1016/j.supflu.2009.02.006 es_ES
dc.description.references Garcia-Gonzalez, L., Geeraerd, A. H., Spilimbergo, S., Elst, K., Van Ginneken, L., Debevere, J., … Devlieghere, F. (2007). High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. International Journal of Food Microbiology, 117(1), 1-28. doi:10.1016/j.ijfoodmicro.2007.02.018 es_ES
dc.description.references Gogate, P. R., Sutkar, V. S., & Pandit, A. B. (2011). Sonochemical reactors: Important design and scale up considerations with a special emphasis on heterogeneous systems. Chemical Engineering Journal, 166(3), 1066-1082. doi:10.1016/j.cej.2010.11.069 es_ES
dc.description.references Gómez, P. L., Welti-Chanes, J., & Alzamora, S. M. (2011). Hurdle Technology in Fruit Processing. Annual Review of Food Science and Technology, 2(1), 447-465. doi:10.1146/annurev-food-022510-133619 es_ES
dc.description.references Klimczak, I., Małecka, M., Szlachta, M., & Gliszczyńska-Świgło, A. (2007). Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. Journal of Food Composition and Analysis, 20(3-4), 313-322. doi:10.1016/j.jfca.2006.02.012 es_ES
dc.description.references Laorko, A., Tongchitpakdee, S., & Youravong, W. (2013). Storage quality of pineapple juice non-thermally pasteurized and clarified by microfiltration. Journal of Food Engineering, 116(2), 554-561. doi:10.1016/j.jfoodeng.2012.12.033 es_ES
dc.description.references Lin, H. M., Yang, Z., & Chen, L. F. (1992). Inactivation of Saccharomyces cerevisiae by supercritical and subcritical carbon dioxide. Biotechnology Progress, 8(5), 458-461. doi:10.1021/bp00017a013 es_ES
dc.description.references Ng, L.-K., & Hupé, M. (1998). Analysis of sterols: a novel approach for detecting juices of pineapple, passionfruit, orange and grapefruit in compounded beverages. Journal of the Science of Food and Agriculture, 76(4), 617-627. doi:10.1002/(sici)1097-0010(199804)76:4<617::aid-jsfa20>3.0.co;2-5 es_ES
dc.description.references Odriozola-Serrano, I., Soliva-Fortuny, R., & Martín-Belloso, O. (2008). Changes of health-related compounds throughout cold storage of tomato juice stabilized by thermal or high intensity pulsed electric field treatments. Innovative Food Science & Emerging Technologies, 9(3), 272-279. doi:10.1016/j.ifset.2007.07.009 es_ES
dc.description.references Paniagua-Martínez, I., Mulet, A., García-Alvarado, M. A., & Benedito, J. (2016). Ultrasound-assisted supercritical CO2 treatment in continuous regime: Application in Saccharomyces cerevisiae inactivation. Journal of Food Engineering, 181, 42-49. doi:10.1016/j.jfoodeng.2016.02.024 es_ES
dc.description.references Pétrier, C., Combet, E., & Mason, T. (2007). Oxygen-induced concurrent ultrasonic degradation of volatile and non-volatile aromatic compounds. Ultrasonics Sonochemistry, 14(2), 117-121. doi:10.1016/j.ultsonch.2006.04.007 es_ES
dc.description.references Piljac-Žegarac, J., Valek, L., Martinez, S., & Belščak, A. (2009). Fluctuations in the phenolic content and antioxidant capacity of dark fruit juices in refrigerated storage. Food Chemistry, 113(2), 394-400. doi:10.1016/j.foodchem.2008.07.048 es_ES
dc.description.references Rattanathanalerk, M., Chiewchan, N., & Srichumpoung, W. (2005). Effect of thermal processing on the quality loss of pineapple juice. Journal of Food Engineering, 66(2), 259-265. doi:10.1016/j.jfoodeng.2004.03.016 es_ES
dc.description.references Rawson, A., Tiwari, B. K., Patras, A., Brunton, N., Brennan, C., Cullen, P. J., & O’Donnell, C. (2011). Effect of thermosonication on bioactive compounds in watermelon juice. Food Research International, 44(5), 1168-1173. doi:10.1016/j.foodres.2010.07.005 es_ES
dc.description.references Wen, L., & Wrolstad, R. E. (2002). Phenolic Composition of Authentic Pineapple Juice. Journal of Food Science, 67(1), 155-161. doi:10.1111/j.1365-2621.2002.tb11376.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem