- -

Largely tunable dispersion chirped polymer FBG

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Largely tunable dispersion chirped polymer FBG

Mostrar el registro completo del ítem

Min, R.; Korganbayev, S.; Molardi, C.; Broadway, C.; Hu, X.; Caucheteur, C.; Bang, O.... (2018). Largely tunable dispersion chirped polymer FBG. Optics Letters. 43(20):5106-5109. https://doi.org/10.1364/OL.43.005106

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/146304

Ficheros en el ítem

Metadatos del ítem

Título: Largely tunable dispersion chirped polymer FBG
Autor: Min, Rui Korganbayev, Sanzhar Molardi, Carlo Broadway, Christian Hu, Xuehao Caucheteur, Christophe Bang, Ole Antunes, Paulo Tosi, Daniele Marques, Carlos Ortega Tamarit, Beatriz
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] We demonstrate a largely tunable dispersion fiber Bragg grating (FBG) inscribed in a microstructured polymer optical fiber (mPOF). The bandwidth of the chirped FBG (CFBG) was achieved from 0.11 to 4.86 nm, which ...[+]
Palabras clave: Fiber Bragg gratings , Laser beams , Microstructured fibers , Strain measurement , Tapered fibers
Derechos de uso: Reserva de todos los derechos
Fuente:
Optics Letters. (issn: 0146-9592 )
DOI: 10.1364/OL.43.005106
Editorial:
The Optical Society
Versión del editor: https://doi.org/10.1364/OL.43.005106
Código del Proyecto:
info:eu-repo/grantAgreement/Natural Science Foundation of Heilongjiang Province//F2018026/
info:eu-repo/grantAgreement/FCT/5876/147328/PT/Instituto de Telecomunicações/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F012/ES/TECNOLOGIAS DE NUEVA GENERACION EN FOTONICA DE MICROONDAS (NEXT GENERATION MICROWAVE PHOTONIC TECHNOLOGIES)/
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F109458%2F2015/PT/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F103/ES/TECNOLOGIAS Y APLICACIONES FUTURAS DE LA FOTONICA DE MICROONDAS (FUTURE MWP TECHNOLOGIES & APPLICATIONS)/
Agradecimientos:
Fundacao para a Ciencia e a Tecnologia (FCT) (SFRH/BPD/109458/2015, UID/EEA/50008/2013); Research Excellence Award Programme GVA (PROMETEO 2017/103); Oak Ridge Associated Universities (ORAU) (LIFESTART (2017-2019)); Natural ...[+]
Tipo: Artículo

References

Reyes, P. I., Litchinitser, N., Sumetsky, M., & Westbrook, P. S. (2005). 160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater. IEEE Photonics Technology Letters, 17(4), 831-833. doi:10.1109/lpt.2005.843690

Tang, Z., Pan, S., Zhu, D., Guo, R., Zhao, Y., Pan, M., … Yao, J. (2012). Tunable Optoelectronic Oscillator Based on a Polarization Modulator and a Chirped FBG. IEEE Photonics Technology Letters, 24(17), 1487-1489. doi:10.1109/lpt.2012.2205235

He, X., Liu, Z., & Wang, D. N. (2012). Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating. Optics Letters, 37(12), 2394. doi:10.1364/ol.37.002394 [+]
Reyes, P. I., Litchinitser, N., Sumetsky, M., & Westbrook, P. S. (2005). 160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater. IEEE Photonics Technology Letters, 17(4), 831-833. doi:10.1109/lpt.2005.843690

Tang, Z., Pan, S., Zhu, D., Guo, R., Zhao, Y., Pan, M., … Yao, J. (2012). Tunable Optoelectronic Oscillator Based on a Polarization Modulator and a Chirped FBG. IEEE Photonics Technology Letters, 24(17), 1487-1489. doi:10.1109/lpt.2012.2205235

He, X., Liu, Z., & Wang, D. N. (2012). Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating. Optics Letters, 37(12), 2394. doi:10.1364/ol.37.002394

Zhou, W., Dong, X., Ni, K., Chan, C. C., & Shum, P. (2010). Temperature-insensitive accelerometer based on a strain-chirped FBG. Sensors and Actuators A: Physical, 157(1), 15-18. doi:10.1016/j.sna.2009.11.003

Tosi, D., Macchi, E. G., Gallati, M., Braschi, G., Cigada, A., Rossi, S., … Lewis, E. (2014). Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver. Biomedical Optics Express, 5(6), 1799. doi:10.1364/boe.5.001799

Ortega, B., Cruz, J. L., Capmany, J., Andres, M. V., & Pastor, D. (2000). Variable delay line for phased-array antenna based on a chirped fiber grating. IEEE Transactions on Microwave Theory and Techniques, 48(8), 1352-1360. doi:10.1109/22.859480

Wang, C., & Yao, J. (2008). Photonic Generation of Chirped Millimeter-Wave Pulses Based on Nonlinear Frequency-to-Time Mapping in a Nonlinearly Chirped Fiber Bragg Grating. IEEE Transactions on Microwave Theory and Techniques, 56(2), 542-553. doi:10.1109/tmtt.2007.914639

Capmany, J., Ortega, B., & Pastor, D. (2006). A tutorial on microwave photonic filters. Journal of Lightwave Technology, 24(1), 201-229. doi:10.1109/jlt.2005.860478

Lauzon, J., Thibault, S., Martin, J., & Ouellette, F. (1994). Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient. Optics Letters, 19(23), 2027. doi:10.1364/ol.19.002027

Hill, P. C., & Eggleton, B. J. (1994). Strain gradient chirp of fibre Bragg gratings. Electronics Letters, 30(14), 1172-1174. doi:10.1049/el:19940772

Kashyap, R., McKee, P. F., Williams, D. L., & Campbell, R. J. (1994). Novel method of producing all fibre photoinduced chirped gratings. Electronics Letters, 30(12), 996-998. doi:10.1049/el:19940669

Candiani, A., Margulis, W., Sterner, C., Konstantaki, M., & Pissadakis, S. (2011). Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids. Optics Letters, 36(13), 2548. doi:10.1364/ol.36.002548

Marques, C. A. F., Webb, D. J., & Andre, P. (2017). Polymer optical fiber sensors in human life safety. Optical Fiber Technology, 36, 144-154. doi:10.1016/j.yofte.2017.03.010

Hejie Yang, Lee, S. C. J., Tangdiongga, E., Okonkwo, C., van den Boom, H., Breyer, F., … Koonen, A. (2010). 47.4 Gb/s Transmission Over 100 m Graded-Index Plastic Optical Fiber Based on Rate-Adaptive Discrete Multitone Modulation. Journal of Lightwave Technology, 28(4), 352-359. doi:10.1109/jlt.2009.2034393

Xiong, Z., Peng, G. D., Wu, B., & Chu, P. L. (1999). Highly tunable Bragg gratings in single-mode polymer optical fibers. IEEE Photonics Technology Letters, 11(3), 352-354. doi:10.1109/68.748232

Pereira, L. M., Pospori, A., Antunes, P., Domingues, M. F., Marques, S., Bang, O., … Marques, C. A. F. (2017). Phase-Shifted Bragg Grating Inscription in PMMA Microstructured POF Using 248-nm UV Radiation. Journal of Lightwave Technology, 35(23), 5176-5184. doi:10.1109/jlt.2017.2771436

Hu, X., Pun, C.-F. J., Tam, H.-Y., Mégret, P., & Caucheteur, C. (2014). Tilted Bragg gratings in step-index polymer optical fiber. Optics Letters, 39(24), 6835. doi:10.1364/ol.39.006835

Lacraz, A., Polis, M., Theodosiou, A., Koutsides, C., & Kalli, K. (2015). Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber. IEEE Photonics Technology Letters, 27(7), 693-696. doi:10.1109/lpt.2014.2386692

Hongbo Liu, Huiyong Liu, Gangding Peng, & Whitbread, T. W. (2005). Tunable dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength. IEEE Photonics Technology Letters, 17(2), 411-413. doi:10.1109/lpt.2004.839378

Marques, C. A. F., Antunes, P., Mergo, P., Webb, D. J., & Andre, P. (2017). Chirped Bragg Gratings in PMMA Step-Index Polymer Optical Fiber. IEEE Photonics Technology Letters, 29(6), 500-503. doi:10.1109/lpt.2017.2662219

Min, R., Ortega, B., & Marques, C. (2018). Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask. Optics Express, 26(4), 4411. doi:10.1364/oe.26.004411

Cruz, J. L., Dong, L., Barcelos, S., & Reekie, L. (1996). Fiber Bragg gratings with various chirp profiles made in etched tapers. Applied Optics, 35(34), 6781. doi:10.1364/ao.35.006781

Hu, X., Woyessa, G., Kinet, D., Janting, J., Nielsen, K., Bang, O., & Caucheteur, C. (2017). BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription. Optics Letters, 42(11), 2209. doi:10.1364/ol.42.002209

Saez-Rodriguez, D., Min, R., Ortega, B., Nielsen, K., & Webb, D. J. (2016). Passive and Portable Polymer Optical Fiber Cleaver. IEEE Photonics Technology Letters, 28(24), 2834-2837. doi:10.1109/lpt.2016.2623419

Hu, X., Pun, C.-F. J., Tam, H.-Y., Mégret, P., & Caucheteur, C. (2014). Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber. Optics Express, 22(15), 18807. doi:10.1364/oe.22.018807

Broadway, C., Gallego, D., Pospori, A., Zubel, M., Webb, D. J., Sugden, K., … Lamela, H. (2016). Microstructured polymer optical fibre sensors for opto-acoustic endoscopy. Micro-Structured and Specialty Optical Fibres IV. doi:10.1117/12.2227588

Dong, L., Cruz, J. L., Reekie, L., & Tucknott, J. A. (1995). Fabrication of chirped fibre gratings using etched tapers. Electronics Letters, 31(11), 908-909. doi:10.1049/el:19950588

Yuan, W., Stefani, A., Bache, M., Jacobsen, T., Rose, B., Herholdt-Rasmussen, N., … Bang, O. (2011). Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings. Optics Communications, 284(1), 176-182. doi:10.1016/j.optcom.2010.08.069

Erdogan, T. (1997). Fiber grating spectra. Journal of Lightwave Technology, 15(8), 1277-1294. doi:10.1109/50.618322

Bai-Ou Guan, Hwa-Yaw Tam, Xiao-Ming Tao, & Xiao-Yi Dong. (2000). Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating. IEEE Photonics Technology Letters, 12(6), 675-677. doi:10.1109/68.849081

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem