- -

Largely tunable dispersion chirped polymer FBG

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Largely tunable dispersion chirped polymer FBG

Show simple item record

Files in this item

dc.contributor.author Min, Rui es_ES
dc.contributor.author Korganbayev, Sanzhar es_ES
dc.contributor.author Molardi, Carlo es_ES
dc.contributor.author Broadway, Christian es_ES
dc.contributor.author Hu, Xuehao es_ES
dc.contributor.author Caucheteur, Christophe es_ES
dc.contributor.author Bang, Ole es_ES
dc.contributor.author Antunes, Paulo es_ES
dc.contributor.author Tosi, Daniele es_ES
dc.contributor.author Marques, Carlos es_ES
dc.contributor.author Ortega Tamarit, Beatriz es_ES
dc.date.accessioned 2020-06-13T03:33:25Z
dc.date.available 2020-06-13T03:33:25Z
dc.date.issued 2018-10-15 es_ES
dc.identifier.issn 0146-9592 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146304
dc.description.abstract [EN] We demonstrate a largely tunable dispersion fiber Bragg grating (FBG) inscribed in a microstructured polymer optical fiber (mPOF). The bandwidth of the chirped FBG (CFBG) was achieved from 0.11 to 4.86 nm, which corresponds to a tunable dispersion range from 513.6 to 11.15 ps/nm. Furthermore, thermal sensitivity is used to compensate for the wavelength shift due to the applied strain. These results demonstrate that a CFBG in a POF is a promising technology for future optical systems. (C) 2018 Optical Society of America es_ES
dc.description.sponsorship Fundacao para a Ciencia e a Tecnologia (FCT) (SFRH/BPD/109458/2015, UID/EEA/50008/2013); Research Excellence Award Programme GVA (PROMETEO 2017/103); Oak Ridge Associated Universities (ORAU) (LIFESTART (2017-2019)); Natural Science Foundation of Heilongjiang Province (F2018026). es_ES
dc.language Inglés es_ES
dc.publisher The Optical Society es_ES
dc.relation.ispartof Optics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fiber Bragg gratings es_ES
dc.subject Laser beams es_ES
dc.subject Microstructured fibers es_ES
dc.subject Strain measurement es_ES
dc.subject Tapered fibers es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Largely tunable dispersion chirped polymer FBG es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OL.43.005106 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Natural Science Foundation of Heilongjiang Province//F2018026/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876/147328/PT/Instituto de Telecomunicações/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F012/ES/TECNOLOGIAS DE NUEVA GENERACION EN FOTONICA DE MICROONDAS (NEXT GENERATION MICROWAVE PHOTONIC TECHNOLOGIES)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F109458%2F2015/PT/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F103/ES/TECNOLOGIAS Y APLICACIONES FUTURAS DE LA FOTONICA DE MICROONDAS (FUTURE MWP TECHNOLOGIES & APPLICATIONS)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Min, R.; Korganbayev, S.; Molardi, C.; Broadway, C.; Hu, X.; Caucheteur, C.; Bang, O.... (2018). Largely tunable dispersion chirped polymer FBG. Optics Letters. 43(20):5106-5109. https://doi.org/10.1364/OL.43.005106 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/OL.43.005106 es_ES
dc.description.upvformatpinicio 5106 es_ES
dc.description.upvformatpfin 5109 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 20 es_ES
dc.identifier.pmid 30320831 es_ES
dc.relation.pasarela S\384189 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Oak Ridge Associated Universities es_ES
dc.contributor.funder Natural Science Foundation of Heilongjiang Province es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.description.references Reyes, P. I., Litchinitser, N., Sumetsky, M., & Westbrook, P. S. (2005). 160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater. IEEE Photonics Technology Letters, 17(4), 831-833. doi:10.1109/lpt.2005.843690 es_ES
dc.description.references Tang, Z., Pan, S., Zhu, D., Guo, R., Zhao, Y., Pan, M., … Yao, J. (2012). Tunable Optoelectronic Oscillator Based on a Polarization Modulator and a Chirped FBG. IEEE Photonics Technology Letters, 24(17), 1487-1489. doi:10.1109/lpt.2012.2205235 es_ES
dc.description.references He, X., Liu, Z., & Wang, D. N. (2012). Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating. Optics Letters, 37(12), 2394. doi:10.1364/ol.37.002394 es_ES
dc.description.references Zhou, W., Dong, X., Ni, K., Chan, C. C., & Shum, P. (2010). Temperature-insensitive accelerometer based on a strain-chirped FBG. Sensors and Actuators A: Physical, 157(1), 15-18. doi:10.1016/j.sna.2009.11.003 es_ES
dc.description.references Tosi, D., Macchi, E. G., Gallati, M., Braschi, G., Cigada, A., Rossi, S., … Lewis, E. (2014). Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver. Biomedical Optics Express, 5(6), 1799. doi:10.1364/boe.5.001799 es_ES
dc.description.references Ortega, B., Cruz, J. L., Capmany, J., Andres, M. V., & Pastor, D. (2000). Variable delay line for phased-array antenna based on a chirped fiber grating. IEEE Transactions on Microwave Theory and Techniques, 48(8), 1352-1360. doi:10.1109/22.859480 es_ES
dc.description.references Wang, C., & Yao, J. (2008). Photonic Generation of Chirped Millimeter-Wave Pulses Based on Nonlinear Frequency-to-Time Mapping in a Nonlinearly Chirped Fiber Bragg Grating. IEEE Transactions on Microwave Theory and Techniques, 56(2), 542-553. doi:10.1109/tmtt.2007.914639 es_ES
dc.description.references Capmany, J., Ortega, B., & Pastor, D. (2006). A tutorial on microwave photonic filters. Journal of Lightwave Technology, 24(1), 201-229. doi:10.1109/jlt.2005.860478 es_ES
dc.description.references Lauzon, J., Thibault, S., Martin, J., & Ouellette, F. (1994). Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient. Optics Letters, 19(23), 2027. doi:10.1364/ol.19.002027 es_ES
dc.description.references Hill, P. C., & Eggleton, B. J. (1994). Strain gradient chirp of fibre Bragg gratings. Electronics Letters, 30(14), 1172-1174. doi:10.1049/el:19940772 es_ES
dc.description.references Kashyap, R., McKee, P. F., Williams, D. L., & Campbell, R. J. (1994). Novel method of producing all fibre photoinduced chirped gratings. Electronics Letters, 30(12), 996-998. doi:10.1049/el:19940669 es_ES
dc.description.references Candiani, A., Margulis, W., Sterner, C., Konstantaki, M., & Pissadakis, S. (2011). Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids. Optics Letters, 36(13), 2548. doi:10.1364/ol.36.002548 es_ES
dc.description.references Marques, C. A. F., Webb, D. J., & Andre, P. (2017). Polymer optical fiber sensors in human life safety. Optical Fiber Technology, 36, 144-154. doi:10.1016/j.yofte.2017.03.010 es_ES
dc.description.references Hejie Yang, Lee, S. C. J., Tangdiongga, E., Okonkwo, C., van den Boom, H., Breyer, F., … Koonen, A. (2010). 47.4 Gb/s Transmission Over 100 m Graded-Index Plastic Optical Fiber Based on Rate-Adaptive Discrete Multitone Modulation. Journal of Lightwave Technology, 28(4), 352-359. doi:10.1109/jlt.2009.2034393 es_ES
dc.description.references Xiong, Z., Peng, G. D., Wu, B., & Chu, P. L. (1999). Highly tunable Bragg gratings in single-mode polymer optical fibers. IEEE Photonics Technology Letters, 11(3), 352-354. doi:10.1109/68.748232 es_ES
dc.description.references Pereira, L. M., Pospori, A., Antunes, P., Domingues, M. F., Marques, S., Bang, O., … Marques, C. A. F. (2017). Phase-Shifted Bragg Grating Inscription in PMMA Microstructured POF Using 248-nm UV Radiation. Journal of Lightwave Technology, 35(23), 5176-5184. doi:10.1109/jlt.2017.2771436 es_ES
dc.description.references Hu, X., Pun, C.-F. J., Tam, H.-Y., Mégret, P., & Caucheteur, C. (2014). Tilted Bragg gratings in step-index polymer optical fiber. Optics Letters, 39(24), 6835. doi:10.1364/ol.39.006835 es_ES
dc.description.references Lacraz, A., Polis, M., Theodosiou, A., Koutsides, C., & Kalli, K. (2015). Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber. IEEE Photonics Technology Letters, 27(7), 693-696. doi:10.1109/lpt.2014.2386692 es_ES
dc.description.references Hongbo Liu, Huiyong Liu, Gangding Peng, & Whitbread, T. W. (2005). Tunable dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength. IEEE Photonics Technology Letters, 17(2), 411-413. doi:10.1109/lpt.2004.839378 es_ES
dc.description.references Marques, C. A. F., Antunes, P., Mergo, P., Webb, D. J., & Andre, P. (2017). Chirped Bragg Gratings in PMMA Step-Index Polymer Optical Fiber. IEEE Photonics Technology Letters, 29(6), 500-503. doi:10.1109/lpt.2017.2662219 es_ES
dc.description.references Min, R., Ortega, B., & Marques, C. (2018). Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask. Optics Express, 26(4), 4411. doi:10.1364/oe.26.004411 es_ES
dc.description.references Cruz, J. L., Dong, L., Barcelos, S., & Reekie, L. (1996). Fiber Bragg gratings with various chirp profiles made in etched tapers. Applied Optics, 35(34), 6781. doi:10.1364/ao.35.006781 es_ES
dc.description.references Hu, X., Woyessa, G., Kinet, D., Janting, J., Nielsen, K., Bang, O., & Caucheteur, C. (2017). BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription. Optics Letters, 42(11), 2209. doi:10.1364/ol.42.002209 es_ES
dc.description.references Saez-Rodriguez, D., Min, R., Ortega, B., Nielsen, K., & Webb, D. J. (2016). Passive and Portable Polymer Optical Fiber Cleaver. IEEE Photonics Technology Letters, 28(24), 2834-2837. doi:10.1109/lpt.2016.2623419 es_ES
dc.description.references Hu, X., Pun, C.-F. J., Tam, H.-Y., Mégret, P., & Caucheteur, C. (2014). Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber. Optics Express, 22(15), 18807. doi:10.1364/oe.22.018807 es_ES
dc.description.references Broadway, C., Gallego, D., Pospori, A., Zubel, M., Webb, D. J., Sugden, K., … Lamela, H. (2016). Microstructured polymer optical fibre sensors for opto-acoustic endoscopy. Micro-Structured and Specialty Optical Fibres IV. doi:10.1117/12.2227588 es_ES
dc.description.references Dong, L., Cruz, J. L., Reekie, L., & Tucknott, J. A. (1995). Fabrication of chirped fibre gratings using etched tapers. Electronics Letters, 31(11), 908-909. doi:10.1049/el:19950588 es_ES
dc.description.references Yuan, W., Stefani, A., Bache, M., Jacobsen, T., Rose, B., Herholdt-Rasmussen, N., … Bang, O. (2011). Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings. Optics Communications, 284(1), 176-182. doi:10.1016/j.optcom.2010.08.069 es_ES
dc.description.references Erdogan, T. (1997). Fiber grating spectra. Journal of Lightwave Technology, 15(8), 1277-1294. doi:10.1109/50.618322 es_ES
dc.description.references Bai-Ou Guan, Hwa-Yaw Tam, Xiao-Ming Tao, & Xiao-Yi Dong. (2000). Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating. IEEE Photonics Technology Letters, 12(6), 675-677. doi:10.1109/68.849081 es_ES


This item appears in the following Collection(s)

Show simple item record