Hunziker, E. B. (1999). Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthritis and Cartilage, 7(1), 15-28. doi:10.1053/joca.1998.0159
Benya, P. D., Padilla, S. R., & Nimni, M. E. (1978). Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell, 15(4), 1313-1321. doi:10.1016/0092-8674(78)90056-9
Mayne, R., Vail, M. S., Mayne, P. M., & Miller, E. J. (1976). Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proceedings of the National Academy of Sciences, 73(5), 1674-1678. doi:10.1073/pnas.73.5.1674
[+]
Hunziker, E. B. (1999). Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthritis and Cartilage, 7(1), 15-28. doi:10.1053/joca.1998.0159
Benya, P. D., Padilla, S. R., & Nimni, M. E. (1978). Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell, 15(4), 1313-1321. doi:10.1016/0092-8674(78)90056-9
Mayne, R., Vail, M. S., Mayne, P. M., & Miller, E. J. (1976). Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proceedings of the National Academy of Sciences, 73(5), 1674-1678. doi:10.1073/pnas.73.5.1674
VON DER MARK, K., GAUSS, V., VON DER MARK, H., & MÜLLER, P. (1977). Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature, 267(5611), 531-532. doi:10.1038/267531a0
Darling, E. M., & Athanasiou, K. A. (2005). Rapid phenotypic changes in passaged articular chondrocyte subpopulations. Journal of Orthopaedic Research, 23(2), 425-432. doi:10.1016/j.orthres.2004.08.008
Brodkin, K. R., Garcı́a, A. J., & Levenston, M. E. (2004). Chondrocyte phenotypes on different extracellular matrix monolayers. Biomaterials, 25(28), 5929-5938. doi:10.1016/j.biomaterials.2004.01.044
Martin, I., Suetterlin, R., Baschong, W., Heberer, M., Vunjak-Novakovic, G., & Freed, L. E. (2001). Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation. Journal of Cellular Biochemistry, 83(1), 121-128. doi:10.1002/jcb.1203
Curtis, A. S., Forrester, J. V., McInnes, C., & Lawrie, F. (1983). Adhesion of cells to polystyrene surfaces. Journal of Cell Biology, 97(5), 1500-1506. doi:10.1083/jcb.97.5.1500
Wyre, R. M., & Downes, S. (2002). The role of protein adsorption on chondrocyte adhesion to a heterocyclic methacrylate polymer system. Biomaterials, 23(2), 357-364. doi:10.1016/s0142-9612(01)00113-2
Loty, C., Forest, N., Boulekbache, H., Kokubo, T., & Sautier, J. M. (1997). Behavior of fetal rat chondrocytes cultured on a bioactive glass-ceramic. Journal of Biomedical Materials Research, 37(1), 137-149. doi:10.1002/(sici)1097-4636(199710)37:1<137::aid-jbm17>3.0.co;2-d
SHAKIBAEI, M. (1997). INTEGRIN EXPRESSION AND COLLAGEN TYPE II IMPLICATED IN MAINTENANCE OF CHONDROCYTE SHAPE IN MONOLAYER CULTURE: AN IMMUNOMORPHOLOGICAL STUDY. Cell Biology International, 21(2), 115-125. doi:10.1006/cbir.1996.0118
Kuettner, K. E., Memoli, V. A., Pauli, B. U., Wrobel, N. C., Thonar, E. J., & Daniel, J. C. (1982). Synthesis of cartilage matrix by mammalian chondrocytes in vitro. II. Maintenance of collagen and proteoglycan phenotype. Journal of Cell Biology, 93(3), 751-757. doi:10.1083/jcb.93.3.751
G., S.-T., Souza, P. de, Castrejon, H. V., T., J., H.-J., M., A., S., & M., S. (2002). Redifferentiation of dedifferentiated human chondrocytes in high-density cultures. Cell and Tissue Research, 308(3), 371-379. doi:10.1007/s00441-002-0562-7
Woodfield, T. B. F., Miot, S., Martin, I., van Blitterswijk, C. A., & Riesle, J. (2006). The regulation of expanded human nasal chondrocyte re-differentiation capacity by substrate composition and gas plasma surface modification. Biomaterials, 27(7), 1043-1053. doi:10.1016/j.biomaterials.2005.07.032
Benya, P. D., Brown, P. D., & Padilla, S. R. (1988). Microfilament modification by dihydrocytochalasin B causes retinoic acid-modulated chondrocytes to reexpress the differentiated collagen phenotype without a change in shape. Journal of Cell Biology, 106(1), 161-170. doi:10.1083/jcb.106.1.161
Brown, P. D., & Benya, P. D. (1988). Alterations in chondrocyte cytoskeletal architecture during phenotypic modulation by retinoic acid and dihydrocytochalasin B-induced reexpression. Journal of Cell Biology, 106(1), 171-179. doi:10.1083/jcb.106.1.171
Martínez, E. C., Hernández, J. C. R., Machado, M., Mano, J. F., Ribelles, J. L. G., Pradas, M. M., & Sánchez, M. S. (2008). Human Chondrocyte Morphology, Its Dedifferentiation, and Fibronectin Conformation on Different PLLA Microtopographies. Tissue Engineering Part A, 14(10), 1751-1762. doi:10.1089/ten.tea.2007.0270
Hernández Sánchez, F., Molina Mateo, J., Romero Colomer, F. J., Salmerón Sánchez, M., Gómez Ribelles, J. L., & Mano, J. F. (2005). Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide). Biomacromolecules, 6(6), 3283-3290. doi:10.1021/bm050323t
Zhang, T., Gong, T., Xie, J., Lin, S., Liu, Y., Zhou, T., & Lin, Y. (2016). Softening Substrates Promote Chondrocytes Phenotype via RhoA/ROCK Pathway. ACS Applied Materials & Interfaces, 8(35), 22884-22891. doi:10.1021/acsami.6b07097
Schuh, E., Hofmann, S., Stok, K. S., Notbohm, H., Müller, R., & Rotter, N. (2011). The influence of matrix elasticity on chondrocyte behavior in 3D. Journal of Tissue Engineering and Regenerative Medicine, 6(10), e31-e42. doi:10.1002/term.501
Parreno, J., Bianchi, V. J., Sermer, C., Regmi, S. C., Backstein, D., Schmidt, T. A., & Kandel, R. A. (2018). Adherent agarose mold cultures: An in vitro platform for multi-factorial assessment of passaged chondrocyte redifferentiation. Journal of Orthopaedic Research®, 36(9), 2392-2405. doi:10.1002/jor.23896
Mao, Y., Hoffman, T., Wu, A., & Kohn, J. (2017). An Innovative Laboratory Procedure to Expand Chondrocytes with Reduced Dedifferentiation. CARTILAGE, 9(2), 202-211. doi:10.1177/1947603517746724
Shao, X., Lin, S., Peng, Q., Shi, S., Wei, X., Zhang, T., & Lin, Y. (2017). Tetrahedral DNA Nanostructure: A Potential Promoter for Cartilage Tissue Regeneration via Regulating Chondrocyte Phenotype and Proliferation. Small, 13(12), 1602770. doi:10.1002/smll.201602770
Li, S., Wang, X., Cao, B., Ye, K., Li, Z., & Ding, J. (2015). Effects of Nanoscale Spatial Arrangement of Arginine–Glycine–Aspartate Peptides on Dedifferentiation of Chondrocytes. Nano Letters, 15(11), 7755-7765. doi:10.1021/acs.nanolett.5b04043
Rosenzweig, D. H., Matmati, M., Khayat, G., Chaudhry, S., Hinz, B., & Quinn, T. M. (2012). Culture of Primary Bovine Chondrocytes on a Continuously Expanding Surface Inhibits Dedifferentiation. Tissue Engineering Part A, 18(23-24), 2466-2476. doi:10.1089/ten.tea.2012.0215
Hoshiba, T., Yamada, T., Lu, H., Kawazoe, N., & Chen, G. (2011). Maintenance of cartilaginous gene expression on extracellular matrix derived from serially passaged chondrocytes during in vitro chondrocyte expansion. Journal of Biomedical Materials Research Part A, 100A(3), 694-702. doi:10.1002/jbm.a.34003
SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x
Griffith, L. G. (2002). Tissue Engineering--Current Challenges and Expanding Opportunities. Science, 295(5557), 1009-1014. doi:10.1126/science.1069210
Grinnell, F. (1986). Focal adhesion sites and the removal of substratum-bound fibronectin. Journal of Cell Biology, 103(6), 2697-2706. doi:10.1083/jcb.103.6.2697
Altankov, G., & Groth, T. (1994). Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. Journal of Materials Science: Materials in Medicine, 5(9-10), 732-737. doi:10.1007/bf00120366
Altankov, G., & Groth, T. (1996). Fibronectin matrix formation and the biocompatibility of materials. Journal of Materials Science: Materials in Medicine, 7(7), 425-429. doi:10.1007/bf00122012
Werner, C., Pompe, T., & Salchert, K. (2006). Modulating Extracellular Matrix at Interfaces of Polymeric Materials. Advances in Polymer Science, 63-93. doi:10.1007/12_089
Baugh, L., & Vogel, V. (2004). Structural changes of fibronectin adsorbed to model surfaces probed by fluorescence resonance energy transfer. Journal of Biomedical Materials Research, 69A(3), 525-534. doi:10.1002/jbm.a.30026
González-García, C., Sousa, S. R., Moratal, D., Rico, P., & Salmerón-Sánchez, M. (2010). Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids and Surfaces B: Biointerfaces, 77(2), 181-190. doi:10.1016/j.colsurfb.2010.01.021
Garcı́a, A. J., Vega, M. D., & Boettiger, D. (1999). Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation. Molecular Biology of the Cell, 10(3), 785-798. doi:10.1091/mbc.10.3.785
Bergkvist, M., Carlsson, J., & Oscarsson, S. (2003). Surface-dependent conformations of human plasma fibronectin adsorbed to silica, mica, and hydrophobic surfaces, studied with use of Atomic Force Microscopy. Journal of Biomedical Materials Research, 64A(2), 349-356. doi:10.1002/jbm.a.10423
Johnson, K. J., Sage, H., Briscoe, G., & Erickson, H. P. (1999). The Compact Conformation of Fibronectin Is Determined by Intramolecular Ionic Interactions. Journal of Biological Chemistry, 274(22), 15473-15479. doi:10.1074/jbc.274.22.15473
Gugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203
Garciadiego-Cazares, D. (2004). Coordination of chondrocyte differentiation and joint formation by 5 1 integrin in the developing appendicular skeleton. Development, 131(19), 4735-4742. doi:10.1242/dev.01345
Kurtis, M. S., Schmidt, T. A., Bugbee, W. D., Loeser, R. F., & Sah, R. L. (2003). Integrin-mediated adhesion of human articular chondrocytes to cartilage. Arthritis & Rheumatism, 48(1), 110-118. doi:10.1002/art.10704
Enomoto-Iwamoto, M., Iwamoto, M., Nakashima, K., Mukudai, Y., Boettiger, D., Pacifici, M., … Suzuki, F. (1997). Involvement of α5β1 Integrin in Matrix Interactions and Proliferation of Chondrocytes. Journal of Bone and Mineral Research, 12(7), 1124-1132. doi:10.1359/jbmr.1997.12.7.1124
Millward-Sadler, S. J., & Salter, D. M. (2004). Integrin-Dependent Signal Cascades in Chondrocyte Mechanotransduction. Annals of Biomedical Engineering, 32(3), 435-446. doi:10.1023/b:abme.0000017538.72511.48
Käpylä, J., Ivaska, J., Riikonen, R., Nykvist, P., Pentikäinen, O., Johnson, M., & Heino, J. (2000). Integrin α2I Domain Recognizes Type I and Type IV Collagens by Different Mechanisms. Journal of Biological Chemistry, 275(5), 3348-3354. doi:10.1074/jbc.275.5.3348
Nykvist, P., Tu, H., Ivaska, J., Käpylä, J., Pihlajaniemi, T., & Heino, J. (2000). Distinct Recognition of Collagen Subtypes by α1β1and α2β1Integrins. Journal of Biological Chemistry, 275(11), 8255-8261. doi:10.1074/jbc.275.11.8255
Tulla, M., Pentikäinen, O. T., Viitasalo, T., Käpylä, J., Impola, U., Nykvist, P., … Heino, J. (2001). Selective Binding of Collagen Subtypes by Integrin α1I, α2I, and α10I Domains. Journal of Biological Chemistry, 276(51), 48206-48212. doi:10.1074/jbc.m104058200
[-]