Mostrar el registro sencillo del ítem
dc.contributor.author | Costa Martínez, Elisa![]() |
es_ES |
dc.contributor.author | González García, Cristina![]() |
es_ES |
dc.contributor.author | Gómez Ribelles, José Luís![]() |
es_ES |
dc.contributor.author | Salmerón Sánchez, Manuel![]() |
es_ES |
dc.date.accessioned | 2020-06-16T03:45:48Z | |
dc.date.available | 2020-06-16T03:45:48Z | |
dc.date.issued | 2018-08-06 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146439 | |
dc.description.abstract | [EN] Articular chondrocytes are difficult to grow, as they lose their characteristic phenotype following expansion on standard tissue culture plates. Here, we show that culturing them on surfaces of poly(L-lactic acid) of well-defined microtopography allows expansion and maintenance of characteristic chondrogenic markers. We investigated the dynamics of human chondrocyte dedifferentiation on the different poly(L-lactic acid) microtopographies by the expression of collagen type I, collagen type II and aggrecan at different culture times. When seeded on poly(L-lactic acid), chondrocytes maintained their characteristic hyaline phenotype up to 7days, which allowed to expand the initial cell population approximately six times without cell dedifferentiation. Maintenance of cell phenotype was afterwards correlated to cell adhesion on the different substrates. Chondrocytes adhesion occurs via the (51) integrin on poly(L-lactic acid), suggesting cell-fibronectin interactions. However, (21) integrin is mainly expressed on the control substrate after 1day of culture, and the characteristic chondrocytic markers are lost (collagen type II expression is overcome by the synthesis of collagen type I). Expanding chondrocytes on poly(L-lactic acid) might be an effective solution to prevent dedifferentiation and improving the number of cells needed for autologous chondrocyte transplantation. | es_ES |
dc.description.sponsorship | The support received from the European Research Council (ERC 306990) and the UK EPSRC (EP/P001114/1) is acknowledged. J.L.G.R. acknowledges support of the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-1 (including the FEDER financial support). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Programme, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | Journal of Tissue Engineering | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Poly(L-lactic acid) | es_ES |
dc.subject | Chondrocyte dedifferentiation | es_ES |
dc.subject | Cell adhesion | es_ES |
dc.subject | Integrins | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Maintenance of chondrocyte phenotype during expansion on PLLA microtopographies | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/2041731418789829 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/306990/EU/Material-driven Fibronectin Fibrillogenesis to Engineer Synergistic Growth Factor Microenvironments/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UKRI//EP%2FP001114%2F1/GB/Engineering growth factor microenvironments - a new therapeutic paradigm for regenerative medicine/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/Biomateriales piezoeléctricos para la diferenciación celular en interfases célula-material eléctricamente activas/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Costa Martínez, E.; González García, C.; Gómez Ribelles, JL.; Salmerón Sánchez, M. (2018). Maintenance of chondrocyte phenotype during expansion on PLLA microtopographies. Journal of Tissue Engineering. 9. https://doi.org/10.1177/2041731418789829 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/2041731418789829 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.identifier.eissn | 2041-7314 | es_ES |
dc.identifier.pmid | 30093985 | es_ES |
dc.identifier.pmcid | PMC6080075 | es_ES |
dc.relation.pasarela | S\382707 | es_ES |
dc.contributor.funder | UK Research and Innovation | es_ES |
dc.contributor.funder | Engineering and Physical Sciences Research Council, Reino Unido | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina | es_ES |
dc.description.references | Hunziker, E. B. (1999). Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthritis and Cartilage, 7(1), 15-28. doi:10.1053/joca.1998.0159 | es_ES |
dc.description.references | Benya, P. D., Padilla, S. R., & Nimni, M. E. (1978). Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell, 15(4), 1313-1321. doi:10.1016/0092-8674(78)90056-9 | es_ES |
dc.description.references | Mayne, R., Vail, M. S., Mayne, P. M., & Miller, E. J. (1976). Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proceedings of the National Academy of Sciences, 73(5), 1674-1678. doi:10.1073/pnas.73.5.1674 | es_ES |
dc.description.references | VON DER MARK, K., GAUSS, V., VON DER MARK, H., & MÜLLER, P. (1977). Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature, 267(5611), 531-532. doi:10.1038/267531a0 | es_ES |
dc.description.references | Darling, E. M., & Athanasiou, K. A. (2005). Rapid phenotypic changes in passaged articular chondrocyte subpopulations. Journal of Orthopaedic Research, 23(2), 425-432. doi:10.1016/j.orthres.2004.08.008 | es_ES |
dc.description.references | Brodkin, K. R., Garcı́a, A. J., & Levenston, M. E. (2004). Chondrocyte phenotypes on different extracellular matrix monolayers. Biomaterials, 25(28), 5929-5938. doi:10.1016/j.biomaterials.2004.01.044 | es_ES |
dc.description.references | Martin, I., Suetterlin, R., Baschong, W., Heberer, M., Vunjak-Novakovic, G., & Freed, L. E. (2001). Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation. Journal of Cellular Biochemistry, 83(1), 121-128. doi:10.1002/jcb.1203 | es_ES |
dc.description.references | Curtis, A. S., Forrester, J. V., McInnes, C., & Lawrie, F. (1983). Adhesion of cells to polystyrene surfaces. Journal of Cell Biology, 97(5), 1500-1506. doi:10.1083/jcb.97.5.1500 | es_ES |
dc.description.references | Wyre, R. M., & Downes, S. (2002). The role of protein adsorption on chondrocyte adhesion to a heterocyclic methacrylate polymer system. Biomaterials, 23(2), 357-364. doi:10.1016/s0142-9612(01)00113-2 | es_ES |
dc.description.references | Loty, C., Forest, N., Boulekbache, H., Kokubo, T., & Sautier, J. M. (1997). Behavior of fetal rat chondrocytes cultured on a bioactive glass-ceramic. Journal of Biomedical Materials Research, 37(1), 137-149. doi:10.1002/(sici)1097-4636(199710)37:1<137::aid-jbm17>3.0.co;2-d | es_ES |
dc.description.references | SHAKIBAEI, M. (1997). INTEGRIN EXPRESSION AND COLLAGEN TYPE II IMPLICATED IN MAINTENANCE OF CHONDROCYTE SHAPE IN MONOLAYER CULTURE: AN IMMUNOMORPHOLOGICAL STUDY. Cell Biology International, 21(2), 115-125. doi:10.1006/cbir.1996.0118 | es_ES |
dc.description.references | Kuettner, K. E., Memoli, V. A., Pauli, B. U., Wrobel, N. C., Thonar, E. J., & Daniel, J. C. (1982). Synthesis of cartilage matrix by mammalian chondrocytes in vitro. II. Maintenance of collagen and proteoglycan phenotype. Journal of Cell Biology, 93(3), 751-757. doi:10.1083/jcb.93.3.751 | es_ES |
dc.description.references | G., S.-T., Souza, P. de, Castrejon, H. V., T., J., H.-J., M., A., S., & M., S. (2002). Redifferentiation of dedifferentiated human chondrocytes in high-density cultures. Cell and Tissue Research, 308(3), 371-379. doi:10.1007/s00441-002-0562-7 | es_ES |
dc.description.references | Woodfield, T. B. F., Miot, S., Martin, I., van Blitterswijk, C. A., & Riesle, J. (2006). The regulation of expanded human nasal chondrocyte re-differentiation capacity by substrate composition and gas plasma surface modification. Biomaterials, 27(7), 1043-1053. doi:10.1016/j.biomaterials.2005.07.032 | es_ES |
dc.description.references | Benya, P. D., Brown, P. D., & Padilla, S. R. (1988). Microfilament modification by dihydrocytochalasin B causes retinoic acid-modulated chondrocytes to reexpress the differentiated collagen phenotype without a change in shape. Journal of Cell Biology, 106(1), 161-170. doi:10.1083/jcb.106.1.161 | es_ES |
dc.description.references | Brown, P. D., & Benya, P. D. (1988). Alterations in chondrocyte cytoskeletal architecture during phenotypic modulation by retinoic acid and dihydrocytochalasin B-induced reexpression. Journal of Cell Biology, 106(1), 171-179. doi:10.1083/jcb.106.1.171 | es_ES |
dc.description.references | Martínez, E. C., Hernández, J. C. R., Machado, M., Mano, J. F., Ribelles, J. L. G., Pradas, M. M., & Sánchez, M. S. (2008). Human Chondrocyte Morphology, Its Dedifferentiation, and Fibronectin Conformation on Different PLLA Microtopographies. Tissue Engineering Part A, 14(10), 1751-1762. doi:10.1089/ten.tea.2007.0270 | es_ES |
dc.description.references | Hernández Sánchez, F., Molina Mateo, J., Romero Colomer, F. J., Salmerón Sánchez, M., Gómez Ribelles, J. L., & Mano, J. F. (2005). Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide). Biomacromolecules, 6(6), 3283-3290. doi:10.1021/bm050323t | es_ES |
dc.description.references | Zhang, T., Gong, T., Xie, J., Lin, S., Liu, Y., Zhou, T., & Lin, Y. (2016). Softening Substrates Promote Chondrocytes Phenotype via RhoA/ROCK Pathway. ACS Applied Materials & Interfaces, 8(35), 22884-22891. doi:10.1021/acsami.6b07097 | es_ES |
dc.description.references | Schuh, E., Hofmann, S., Stok, K. S., Notbohm, H., Müller, R., & Rotter, N. (2011). The influence of matrix elasticity on chondrocyte behavior in 3D. Journal of Tissue Engineering and Regenerative Medicine, 6(10), e31-e42. doi:10.1002/term.501 | es_ES |
dc.description.references | Parreno, J., Bianchi, V. J., Sermer, C., Regmi, S. C., Backstein, D., Schmidt, T. A., & Kandel, R. A. (2018). Adherent agarose mold cultures: An in vitro platform for multi-factorial assessment of passaged chondrocyte redifferentiation. Journal of Orthopaedic Research®, 36(9), 2392-2405. doi:10.1002/jor.23896 | es_ES |
dc.description.references | Mao, Y., Hoffman, T., Wu, A., & Kohn, J. (2017). An Innovative Laboratory Procedure to Expand Chondrocytes with Reduced Dedifferentiation. CARTILAGE, 9(2), 202-211. doi:10.1177/1947603517746724 | es_ES |
dc.description.references | Shao, X., Lin, S., Peng, Q., Shi, S., Wei, X., Zhang, T., & Lin, Y. (2017). Tetrahedral DNA Nanostructure: A Potential Promoter for Cartilage Tissue Regeneration via Regulating Chondrocyte Phenotype and Proliferation. Small, 13(12), 1602770. doi:10.1002/smll.201602770 | es_ES |
dc.description.references | Li, S., Wang, X., Cao, B., Ye, K., Li, Z., & Ding, J. (2015). Effects of Nanoscale Spatial Arrangement of Arginine–Glycine–Aspartate Peptides on Dedifferentiation of Chondrocytes. Nano Letters, 15(11), 7755-7765. doi:10.1021/acs.nanolett.5b04043 | es_ES |
dc.description.references | Rosenzweig, D. H., Matmati, M., Khayat, G., Chaudhry, S., Hinz, B., & Quinn, T. M. (2012). Culture of Primary Bovine Chondrocytes on a Continuously Expanding Surface Inhibits Dedifferentiation. Tissue Engineering Part A, 18(23-24), 2466-2476. doi:10.1089/ten.tea.2012.0215 | es_ES |
dc.description.references | Hoshiba, T., Yamada, T., Lu, H., Kawazoe, N., & Chen, G. (2011). Maintenance of cartilaginous gene expression on extracellular matrix derived from serially passaged chondrocytes during in vitro chondrocyte expansion. Journal of Biomedical Materials Research Part A, 100A(3), 694-702. doi:10.1002/jbm.a.34003 | es_ES |
dc.description.references | SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x | es_ES |
dc.description.references | Griffith, L. G. (2002). Tissue Engineering--Current Challenges and Expanding Opportunities. Science, 295(5557), 1009-1014. doi:10.1126/science.1069210 | es_ES |
dc.description.references | Grinnell, F. (1986). Focal adhesion sites and the removal of substratum-bound fibronectin. Journal of Cell Biology, 103(6), 2697-2706. doi:10.1083/jcb.103.6.2697 | es_ES |
dc.description.references | Altankov, G., & Groth, T. (1994). Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. Journal of Materials Science: Materials in Medicine, 5(9-10), 732-737. doi:10.1007/bf00120366 | es_ES |
dc.description.references | Altankov, G., & Groth, T. (1996). Fibronectin matrix formation and the biocompatibility of materials. Journal of Materials Science: Materials in Medicine, 7(7), 425-429. doi:10.1007/bf00122012 | es_ES |
dc.description.references | Werner, C., Pompe, T., & Salchert, K. (2006). Modulating Extracellular Matrix at Interfaces of Polymeric Materials. Advances in Polymer Science, 63-93. doi:10.1007/12_089 | es_ES |
dc.description.references | Baugh, L., & Vogel, V. (2004). Structural changes of fibronectin adsorbed to model surfaces probed by fluorescence resonance energy transfer. Journal of Biomedical Materials Research, 69A(3), 525-534. doi:10.1002/jbm.a.30026 | es_ES |
dc.description.references | González-García, C., Sousa, S. R., Moratal, D., Rico, P., & Salmerón-Sánchez, M. (2010). Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids and Surfaces B: Biointerfaces, 77(2), 181-190. doi:10.1016/j.colsurfb.2010.01.021 | es_ES |
dc.description.references | Garcı́a, A. J., Vega, M. D., & Boettiger, D. (1999). Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation. Molecular Biology of the Cell, 10(3), 785-798. doi:10.1091/mbc.10.3.785 | es_ES |
dc.description.references | Bergkvist, M., Carlsson, J., & Oscarsson, S. (2003). Surface-dependent conformations of human plasma fibronectin adsorbed to silica, mica, and hydrophobic surfaces, studied with use of Atomic Force Microscopy. Journal of Biomedical Materials Research, 64A(2), 349-356. doi:10.1002/jbm.a.10423 | es_ES |
dc.description.references | Johnson, K. J., Sage, H., Briscoe, G., & Erickson, H. P. (1999). The Compact Conformation of Fibronectin Is Determined by Intramolecular Ionic Interactions. Journal of Biological Chemistry, 274(22), 15473-15479. doi:10.1074/jbc.274.22.15473 | es_ES |
dc.description.references | Gugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203 | es_ES |
dc.description.references | Garciadiego-Cazares, D. (2004). Coordination of chondrocyte differentiation and joint formation by 5 1 integrin in the developing appendicular skeleton. Development, 131(19), 4735-4742. doi:10.1242/dev.01345 | es_ES |
dc.description.references | Kurtis, M. S., Schmidt, T. A., Bugbee, W. D., Loeser, R. F., & Sah, R. L. (2003). Integrin-mediated adhesion of human articular chondrocytes to cartilage. Arthritis & Rheumatism, 48(1), 110-118. doi:10.1002/art.10704 | es_ES |
dc.description.references | Enomoto-Iwamoto, M., Iwamoto, M., Nakashima, K., Mukudai, Y., Boettiger, D., Pacifici, M., … Suzuki, F. (1997). Involvement of α5β1 Integrin in Matrix Interactions and Proliferation of Chondrocytes. Journal of Bone and Mineral Research, 12(7), 1124-1132. doi:10.1359/jbmr.1997.12.7.1124 | es_ES |
dc.description.references | Millward-Sadler, S. J., & Salter, D. M. (2004). Integrin-Dependent Signal Cascades in Chondrocyte Mechanotransduction. Annals of Biomedical Engineering, 32(3), 435-446. doi:10.1023/b:abme.0000017538.72511.48 | es_ES |
dc.description.references | Käpylä, J., Ivaska, J., Riikonen, R., Nykvist, P., Pentikäinen, O., Johnson, M., & Heino, J. (2000). Integrin α2I Domain Recognizes Type I and Type IV Collagens by Different Mechanisms. Journal of Biological Chemistry, 275(5), 3348-3354. doi:10.1074/jbc.275.5.3348 | es_ES |
dc.description.references | Nykvist, P., Tu, H., Ivaska, J., Käpylä, J., Pihlajaniemi, T., & Heino, J. (2000). Distinct Recognition of Collagen Subtypes by α1β1and α2β1Integrins. Journal of Biological Chemistry, 275(11), 8255-8261. doi:10.1074/jbc.275.11.8255 | es_ES |
dc.description.references | Tulla, M., Pentikäinen, O. T., Viitasalo, T., Käpylä, J., Impola, U., Nykvist, P., … Heino, J. (2001). Selective Binding of Collagen Subtypes by Integrin α1I, α2I, and α10I Domains. Journal of Biological Chemistry, 276(51), 48206-48212. doi:10.1074/jbc.m104058200 | es_ES |