- -

Maintenance of chondrocyte phenotype during expansion on PLLA microtopographies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Maintenance of chondrocyte phenotype during expansion on PLLA microtopographies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Costa Martínez, Elisa es_ES
dc.contributor.author González García, Cristina es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.date.accessioned 2020-06-16T03:45:48Z
dc.date.available 2020-06-16T03:45:48Z
dc.date.issued 2018-08-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146439
dc.description.abstract [EN] Articular chondrocytes are difficult to grow, as they lose their characteristic phenotype following expansion on standard tissue culture plates. Here, we show that culturing them on surfaces of poly(L-lactic acid) of well-defined microtopography allows expansion and maintenance of characteristic chondrogenic markers. We investigated the dynamics of human chondrocyte dedifferentiation on the different poly(L-lactic acid) microtopographies by the expression of collagen type I, collagen type II and aggrecan at different culture times. When seeded on poly(L-lactic acid), chondrocytes maintained their characteristic hyaline phenotype up to 7days, which allowed to expand the initial cell population approximately six times without cell dedifferentiation. Maintenance of cell phenotype was afterwards correlated to cell adhesion on the different substrates. Chondrocytes adhesion occurs via the (51) integrin on poly(L-lactic acid), suggesting cell-fibronectin interactions. However, (21) integrin is mainly expressed on the control substrate after 1day of culture, and the characteristic chondrocytic markers are lost (collagen type II expression is overcome by the synthesis of collagen type I). Expanding chondrocytes on poly(L-lactic acid) might be an effective solution to prevent dedifferentiation and improving the number of cells needed for autologous chondrocyte transplantation. es_ES
dc.description.sponsorship The support received from the European Research Council (ERC 306990) and the UK EPSRC (EP/P001114/1) is acknowledged. J.L.G.R. acknowledges support of the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-1 (including the FEDER financial support). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Programme, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Journal of Tissue Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Poly(L-lactic acid) es_ES
dc.subject Chondrocyte dedifferentiation es_ES
dc.subject Cell adhesion es_ES
dc.subject Integrins es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Maintenance of chondrocyte phenotype during expansion on PLLA microtopographies es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/2041731418789829 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/306990/EU/Material-driven Fibronectin Fibrillogenesis to Engineer Synergistic Growth Factor Microenvironments/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//EP%2FP001114%2F1/GB/Engineering growth factor microenvironments - a new therapeutic paradigm for regenerative medicine/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/Biomateriales piezoeléctricos para la diferenciación celular en interfases célula-material eléctricamente activas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Costa Martínez, E.; González García, C.; Gómez Ribelles, JL.; Salmerón Sánchez, M. (2018). Maintenance of chondrocyte phenotype during expansion on PLLA microtopographies. Journal of Tissue Engineering. 9. https://doi.org/10.1177/2041731418789829 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/2041731418789829 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.identifier.eissn 2041-7314 es_ES
dc.identifier.pmid 30093985 es_ES
dc.identifier.pmcid PMC6080075 es_ES
dc.relation.pasarela S\382707 es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.description.references Hunziker, E. B. (1999). Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthritis and Cartilage, 7(1), 15-28. doi:10.1053/joca.1998.0159 es_ES
dc.description.references Benya, P. D., Padilla, S. R., & Nimni, M. E. (1978). Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell, 15(4), 1313-1321. doi:10.1016/0092-8674(78)90056-9 es_ES
dc.description.references Mayne, R., Vail, M. S., Mayne, P. M., & Miller, E. J. (1976). Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proceedings of the National Academy of Sciences, 73(5), 1674-1678. doi:10.1073/pnas.73.5.1674 es_ES
dc.description.references VON DER MARK, K., GAUSS, V., VON DER MARK, H., & MÜLLER, P. (1977). Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature, 267(5611), 531-532. doi:10.1038/267531a0 es_ES
dc.description.references Darling, E. M., & Athanasiou, K. A. (2005). Rapid phenotypic changes in passaged articular chondrocyte subpopulations. Journal of Orthopaedic Research, 23(2), 425-432. doi:10.1016/j.orthres.2004.08.008 es_ES
dc.description.references Brodkin, K. R., Garcı́a, A. J., & Levenston, M. E. (2004). Chondrocyte phenotypes on different extracellular matrix monolayers. Biomaterials, 25(28), 5929-5938. doi:10.1016/j.biomaterials.2004.01.044 es_ES
dc.description.references Martin, I., Suetterlin, R., Baschong, W., Heberer, M., Vunjak-Novakovic, G., & Freed, L. E. (2001). Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation. Journal of Cellular Biochemistry, 83(1), 121-128. doi:10.1002/jcb.1203 es_ES
dc.description.references Curtis, A. S., Forrester, J. V., McInnes, C., & Lawrie, F. (1983). Adhesion of cells to polystyrene surfaces. Journal of Cell Biology, 97(5), 1500-1506. doi:10.1083/jcb.97.5.1500 es_ES
dc.description.references Wyre, R. M., & Downes, S. (2002). The role of protein adsorption on chondrocyte adhesion to a heterocyclic methacrylate polymer system. Biomaterials, 23(2), 357-364. doi:10.1016/s0142-9612(01)00113-2 es_ES
dc.description.references Loty, C., Forest, N., Boulekbache, H., Kokubo, T., & Sautier, J. M. (1997). Behavior of fetal rat chondrocytes cultured on a bioactive glass-ceramic. Journal of Biomedical Materials Research, 37(1), 137-149. doi:10.1002/(sici)1097-4636(199710)37:1<137::aid-jbm17>3.0.co;2-d es_ES
dc.description.references SHAKIBAEI, M. (1997). INTEGRIN EXPRESSION AND COLLAGEN TYPE II IMPLICATED IN MAINTENANCE OF CHONDROCYTE SHAPE IN MONOLAYER CULTURE: AN IMMUNOMORPHOLOGICAL STUDY. Cell Biology International, 21(2), 115-125. doi:10.1006/cbir.1996.0118 es_ES
dc.description.references Kuettner, K. E., Memoli, V. A., Pauli, B. U., Wrobel, N. C., Thonar, E. J., & Daniel, J. C. (1982). Synthesis of cartilage matrix by mammalian chondrocytes in vitro. II. Maintenance of collagen and proteoglycan phenotype. Journal of Cell Biology, 93(3), 751-757. doi:10.1083/jcb.93.3.751 es_ES
dc.description.references G., S.-T., Souza, P. de, Castrejon, H. V., T., J., H.-J., M., A., S., & M., S. (2002). Redifferentiation of dedifferentiated human chondrocytes in high-density cultures. Cell and Tissue Research, 308(3), 371-379. doi:10.1007/s00441-002-0562-7 es_ES
dc.description.references Woodfield, T. B. F., Miot, S., Martin, I., van Blitterswijk, C. A., & Riesle, J. (2006). The regulation of expanded human nasal chondrocyte re-differentiation capacity by substrate composition and gas plasma surface modification. Biomaterials, 27(7), 1043-1053. doi:10.1016/j.biomaterials.2005.07.032 es_ES
dc.description.references Benya, P. D., Brown, P. D., & Padilla, S. R. (1988). Microfilament modification by dihydrocytochalasin B causes retinoic acid-modulated chondrocytes to reexpress the differentiated collagen phenotype without a change in shape. Journal of Cell Biology, 106(1), 161-170. doi:10.1083/jcb.106.1.161 es_ES
dc.description.references Brown, P. D., & Benya, P. D. (1988). Alterations in chondrocyte cytoskeletal architecture during phenotypic modulation by retinoic acid and dihydrocytochalasin B-induced reexpression. Journal of Cell Biology, 106(1), 171-179. doi:10.1083/jcb.106.1.171 es_ES
dc.description.references Martínez, E. C., Hernández, J. C. R., Machado, M., Mano, J. F., Ribelles, J. L. G., Pradas, M. M., & Sánchez, M. S. (2008). Human Chondrocyte Morphology, Its Dedifferentiation, and Fibronectin Conformation on Different PLLA Microtopographies. Tissue Engineering Part A, 14(10), 1751-1762. doi:10.1089/ten.tea.2007.0270 es_ES
dc.description.references Hernández Sánchez, F., Molina Mateo, J., Romero Colomer, F. J., Salmerón Sánchez, M., Gómez Ribelles, J. L., & Mano, J. F. (2005). Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide). Biomacromolecules, 6(6), 3283-3290. doi:10.1021/bm050323t es_ES
dc.description.references Zhang, T., Gong, T., Xie, J., Lin, S., Liu, Y., Zhou, T., & Lin, Y. (2016). Softening Substrates Promote Chondrocytes Phenotype via RhoA/ROCK Pathway. ACS Applied Materials & Interfaces, 8(35), 22884-22891. doi:10.1021/acsami.6b07097 es_ES
dc.description.references Schuh, E., Hofmann, S., Stok, K. S., Notbohm, H., Müller, R., & Rotter, N. (2011). The influence of matrix elasticity on chondrocyte behavior in 3D. Journal of Tissue Engineering and Regenerative Medicine, 6(10), e31-e42. doi:10.1002/term.501 es_ES
dc.description.references Parreno, J., Bianchi, V. J., Sermer, C., Regmi, S. C., Backstein, D., Schmidt, T. A., & Kandel, R. A. (2018). Adherent agarose mold cultures: An in vitro platform for multi-factorial assessment of passaged chondrocyte redifferentiation. Journal of Orthopaedic Research®, 36(9), 2392-2405. doi:10.1002/jor.23896 es_ES
dc.description.references Mao, Y., Hoffman, T., Wu, A., & Kohn, J. (2017). An Innovative Laboratory Procedure to Expand Chondrocytes with Reduced Dedifferentiation. CARTILAGE, 9(2), 202-211. doi:10.1177/1947603517746724 es_ES
dc.description.references Shao, X., Lin, S., Peng, Q., Shi, S., Wei, X., Zhang, T., & Lin, Y. (2017). Tetrahedral DNA Nanostructure: A Potential Promoter for Cartilage Tissue Regeneration via Regulating Chondrocyte Phenotype and Proliferation. Small, 13(12), 1602770. doi:10.1002/smll.201602770 es_ES
dc.description.references Li, S., Wang, X., Cao, B., Ye, K., Li, Z., & Ding, J. (2015). Effects of Nanoscale Spatial Arrangement of Arginine–Glycine–Aspartate Peptides on Dedifferentiation of Chondrocytes. Nano Letters, 15(11), 7755-7765. doi:10.1021/acs.nanolett.5b04043 es_ES
dc.description.references Rosenzweig, D. H., Matmati, M., Khayat, G., Chaudhry, S., Hinz, B., & Quinn, T. M. (2012). Culture of Primary Bovine Chondrocytes on a Continuously Expanding Surface Inhibits Dedifferentiation. Tissue Engineering Part A, 18(23-24), 2466-2476. doi:10.1089/ten.tea.2012.0215 es_ES
dc.description.references Hoshiba, T., Yamada, T., Lu, H., Kawazoe, N., & Chen, G. (2011). Maintenance of cartilaginous gene expression on extracellular matrix derived from serially passaged chondrocytes during in vitro chondrocyte expansion. Journal of Biomedical Materials Research Part A, 100A(3), 694-702. doi:10.1002/jbm.a.34003 es_ES
dc.description.references SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x es_ES
dc.description.references Griffith, L. G. (2002). Tissue Engineering--Current Challenges and Expanding Opportunities. Science, 295(5557), 1009-1014. doi:10.1126/science.1069210 es_ES
dc.description.references Grinnell, F. (1986). Focal adhesion sites and the removal of substratum-bound fibronectin. Journal of Cell Biology, 103(6), 2697-2706. doi:10.1083/jcb.103.6.2697 es_ES
dc.description.references Altankov, G., & Groth, T. (1994). Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. Journal of Materials Science: Materials in Medicine, 5(9-10), 732-737. doi:10.1007/bf00120366 es_ES
dc.description.references Altankov, G., & Groth, T. (1996). Fibronectin matrix formation and the biocompatibility of materials. Journal of Materials Science: Materials in Medicine, 7(7), 425-429. doi:10.1007/bf00122012 es_ES
dc.description.references Werner, C., Pompe, T., & Salchert, K. (2006). Modulating Extracellular Matrix at Interfaces of Polymeric Materials. Advances in Polymer Science, 63-93. doi:10.1007/12_089 es_ES
dc.description.references Baugh, L., & Vogel, V. (2004). Structural changes of fibronectin adsorbed to model surfaces probed by fluorescence resonance energy transfer. Journal of Biomedical Materials Research, 69A(3), 525-534. doi:10.1002/jbm.a.30026 es_ES
dc.description.references González-García, C., Sousa, S. R., Moratal, D., Rico, P., & Salmerón-Sánchez, M. (2010). Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids and Surfaces B: Biointerfaces, 77(2), 181-190. doi:10.1016/j.colsurfb.2010.01.021 es_ES
dc.description.references Garcı́a, A. J., Vega, M. D., & Boettiger, D. (1999). Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation. Molecular Biology of the Cell, 10(3), 785-798. doi:10.1091/mbc.10.3.785 es_ES
dc.description.references Bergkvist, M., Carlsson, J., & Oscarsson, S. (2003). Surface-dependent conformations of human plasma fibronectin adsorbed to silica, mica, and hydrophobic surfaces, studied with use of Atomic Force Microscopy. Journal of Biomedical Materials Research, 64A(2), 349-356. doi:10.1002/jbm.a.10423 es_ES
dc.description.references Johnson, K. J., Sage, H., Briscoe, G., & Erickson, H. P. (1999). The Compact Conformation of Fibronectin Is Determined by Intramolecular Ionic Interactions. Journal of Biological Chemistry, 274(22), 15473-15479. doi:10.1074/jbc.274.22.15473 es_ES
dc.description.references Gugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203 es_ES
dc.description.references Garciadiego-Cazares, D. (2004). Coordination of chondrocyte differentiation and joint formation by  5 1 integrin in the developing appendicular skeleton. Development, 131(19), 4735-4742. doi:10.1242/dev.01345 es_ES
dc.description.references Kurtis, M. S., Schmidt, T. A., Bugbee, W. D., Loeser, R. F., & Sah, R. L. (2003). Integrin-mediated adhesion of human articular chondrocytes to cartilage. Arthritis & Rheumatism, 48(1), 110-118. doi:10.1002/art.10704 es_ES
dc.description.references Enomoto-Iwamoto, M., Iwamoto, M., Nakashima, K., Mukudai, Y., Boettiger, D., Pacifici, M., … Suzuki, F. (1997). Involvement of α5β1 Integrin in Matrix Interactions and Proliferation of Chondrocytes. Journal of Bone and Mineral Research, 12(7), 1124-1132. doi:10.1359/jbmr.1997.12.7.1124 es_ES
dc.description.references Millward-Sadler, S. J., & Salter, D. M. (2004). Integrin-Dependent Signal Cascades in Chondrocyte Mechanotransduction. Annals of Biomedical Engineering, 32(3), 435-446. doi:10.1023/b:abme.0000017538.72511.48 es_ES
dc.description.references Käpylä, J., Ivaska, J., Riikonen, R., Nykvist, P., Pentikäinen, O., Johnson, M., & Heino, J. (2000). Integrin α2I Domain Recognizes Type I and Type IV Collagens by Different Mechanisms. Journal of Biological Chemistry, 275(5), 3348-3354. doi:10.1074/jbc.275.5.3348 es_ES
dc.description.references Nykvist, P., Tu, H., Ivaska, J., Käpylä, J., Pihlajaniemi, T., & Heino, J. (2000). Distinct Recognition of Collagen Subtypes by α1β1and α2β1Integrins. Journal of Biological Chemistry, 275(11), 8255-8261. doi:10.1074/jbc.275.11.8255 es_ES
dc.description.references Tulla, M., Pentikäinen, O. T., Viitasalo, T., Käpylä, J., Impola, U., Nykvist, P., … Heino, J. (2001). Selective Binding of Collagen Subtypes by Integrin α1I, α2I, and α10I Domains. Journal of Biological Chemistry, 276(51), 48206-48212. doi:10.1074/jbc.m104058200 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem