- -

Electroluminescence TPCs at the thermal diffusion limit

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electroluminescence TPCs at the thermal diffusion limit

Mostrar el registro completo del ítem

Henriques, CAO.; Monteiro, CMB.; Gonzalez-Diaz, D.; Azevedo, CDR.; Freitas, EDC.; Mano, RDP.; Jorge, MR.... (2019). Electroluminescence TPCs at the thermal diffusion limit. Journal of High Energy Physics (Online). 1:1-20. https://doi.org/10.1007/JHEP01(2019)027

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/146496

Ficheros en el ítem

Metadatos del ítem

Título: Electroluminescence TPCs at the thermal diffusion limit
Autor: Henriques, C. A. O. Monteiro, C. M. B. Gonzalez-Diaz, D. Azevedo, C. D. R. Freitas, E. D. C. Mano, R. D. P. Jorge, M. R. Fernandes, A. F. M. Gomez-Cadenas, J. J. Fernandes, L. M. P. Álvarez-Puerta, Vicente Ballester Merelo, Francisco José Esteve Bosch, Raul Herrero Bosch, Vicente Mora Mas, Francisco José Rodriguez-Samaniego, Javier Toledo Alarcón, José Francisco
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Fecha difusión:
Resumen:
[EN] The NEXT experiment aims at searching for the hypothetical neutrinoless double-beta decay from the 136Xe isotope using a high-purity xenon TPC. Efficient discrimination of the events through pattern recognition of the ...[+]
Palabras clave: Dark Matter and Double Beta Decay (experiments) , Photon production , Particle correlations and fluctuations , Rare decay
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of High Energy Physics (Online). (eissn: 1029-8479 )
DOI: 10.1007/JHEP01(2019)027
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/JHEP01(2019)027
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/339787/EU/Towards the NEXT generation of bb0nu experimets/
...[+]
info:eu-repo/grantAgreement/EC/FP7/339787/EU/Towards the NEXT generation of bb0nu experimets/
info:eu-repo/grantAgreement/DOE//DE-FG02-13ER42020/
info:eu-repo/grantAgreement/EC/H2020/674896/EU/The Elusives Enterprise: Asymmetries of the Invisible Universe/
info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/
info:eu-repo/grantAgreement/EC/H2020/690575/EU/InvisiblesPlus/
info:eu-repo/grantAgreement/DOE//DE-AC02-07CH11359/
info:eu-repo/grantAgreement/EC/H2020/740055/EU/Molecule for low diffusion TPCs for rare event searches/
info:eu-repo/grantAgreement/DOE//DE-SC0017721/
info:eu-repo/grantAgreement/MINECO//SEV-2014-0398/ES/INSTITUTO DE FISICA CORPUSCULAR (IFIC)/
info:eu-repo/grantAgreement/FCT/PTDC/FIS-NUC%2F2525%2F2014/PT/
info:eu-repo/grantAgreement/MINECO//MDM-2016-0692/
info:eu-repo/grantAgreement/FCT/UID/FIS%2F04559%2F2013/PT/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F120/
info:eu-repo/grantAgreement/FCT/PD/PD%2FBD%2F105921%2F2014/PT/R&D on the feasibility of Ba tagging in High Pressure Xenon Chambers/
info:eu-repo/grantAgreement/GVA//SEJI%2F2017%2F011/ES/Aprendizaje profundo en análisis de detectores en física/
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F109180%2F2015/PT/
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F76842%2F2011/PT/
info:eu-repo/grantAgreement/MINECO//RYC-2015-18820/ES/RYC-2015-18820/
info:eu-repo/grantAgreement/MINECO//FIS2014-53371-C4-4-R/ES/CONSTRUCCION, VALIDACION Y OPERACION DE LA ELECTRONICA DEL EXPERIMENTO NEXT/
[-]
Agradecimientos:
The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and ...[+]
Tipo: Artículo

References

NEXT collaboration, J. Martín-Albo et al., Sensitivity of NEXT-100 to neutrinoless double beta decay, JHEP 05 (2016) 159 [ arXiv:1511.09246 ] [ INSPIRE ].

T. Brunner et al., An RF-only ion-funnel for extraction from high-pressure gases, Intern. J. Mass Spectrom. 379 (2015) 110 [ INSPIRE ].

PANDAX-III collaboration, J. Galan, Microbulk MicrOMEGAs for the search of 0νββ of 136 Xe in the PandaX-III experiment, 2016 JINST 11 P04024 [ arXiv:1512.09034 ] [ INSPIRE ]. [+]
NEXT collaboration, J. Martín-Albo et al., Sensitivity of NEXT-100 to neutrinoless double beta decay, JHEP 05 (2016) 159 [ arXiv:1511.09246 ] [ INSPIRE ].

T. Brunner et al., An RF-only ion-funnel for extraction from high-pressure gases, Intern. J. Mass Spectrom. 379 (2015) 110 [ INSPIRE ].

PANDAX-III collaboration, J. Galan, Microbulk MicrOMEGAs for the search of 0νββ of 136 Xe in the PandaX-III experiment, 2016 JINST 11 P04024 [ arXiv:1512.09034 ] [ INSPIRE ].

D. Yu. Akimov, A.A. Burenkov, V.F. Kuzichev, V.L. Morgunov and V.N. Solovev, Low background experiments with high pressure gas scintillation proportional detector, physics/9704021 [ INSPIRE ].

Yu. M. Gavrilyuk et al., A technique for searching for the 2K capture in 124 Xe with a copper proportional counter, Phys. Atom. Nucl. 78 (2015) 1563 [ INSPIRE ].

D.R. Nygren, Columnar recombination: a tool for nuclear recoil directional sensitivity in a xenon-based direct detection WIMP search, J. Phys. Conf. Ser. 460 (2013) 012006 [ INSPIRE ].

XENON collaboration, E. Aprile et al., First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [ arXiv:1705.06655 ] [ INSPIRE ].

XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [ arXiv:1207.5988 ] [ INSPIRE ].

LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [ arXiv:1608.07648 ] [ INSPIRE ].

PandaX-II collaboration, X. Cui et al., Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [ arXiv:1708.06917 ] [ INSPIRE ].

EXO collaboration, J.B. Albert et al., Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector, Phys. Rev. Lett. 120 (2018) 072701 [ arXiv:1707.08707 ] [ INSPIRE ].

KamLAND-Zen collaboration, A. Gando et al., Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503 [ arXiv:1605.02889 ] [ INSPIRE ].

XMASS collaboration, K. Abe et al., Search for two-neutrino double electron capture on 124 Xe with the XMASS-I detector, Phys. Lett. B 759 (2016) 64 [ arXiv:1510.00754 ] [ INSPIRE ].

XENON collaboration, E. Aprile et al., Search for two-neutrino double electron capture of 124 Xe with XENON100, Phys. Rev. C 95 (2017) 024605 [ arXiv:1609.03354 ] [ INSPIRE ].

R. Lüscher et al., Search for ββ decay in 136 Xe: new results from the Gotthard experiment, Phys. Lett. B 434 (1998) 407 [ INSPIRE ].

NEXT collaboration, P. Ferrario et al., First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment, JHEP 01 (2016) 104 [ arXiv:1507.05902 ] [ INSPIRE ].

NEXT collaboration, D. Lorca et al., Characterisation of NEXT-DEMO using xenon K α X-rays, 2014 JINST 9 P10007 [ arXiv:1407.3966 ] [ INSPIRE ].

NEXT collaboration, D. González-Díaz et al., Accurate γ and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm, Nucl. Instrum. Meth. A 804 (2015) 8 [ arXiv:1504.03678 ] [ INSPIRE ].

C.M.B. Monteiro et al., Secondary Scintillation Yield in Pure Xenon, 2007 JINST 2 P05001 [ physics/0702142 ] [ INSPIRE ].

C.M.B. Monteiro, J.A.M. Lopes, J.F. C.A. Veloso and J.M.F. dos Santos, Secondary scintillation yield in pure argon, Phys. Lett. B 668 (2008) 167 [ INSPIRE ].

E.D.C. Freitas et al., Secondary scintillation yield in high-pressure xenon gas for neutrinoless double beta decay (0νββ) search, Phys. Lett. B 684 (2010) 205 [ INSPIRE ].

C.M.B. Monteiro et al., Secondary scintillation yield from gaseous micropattern electron multipliers in direct dark matter detection, Phys. Lett. B 677 (2009) 133 [ INSPIRE ].

C.M.B. Monteiro, L.M.P. Fernandes, J.F. C.A. Veloso, C.A.B. Oliveira and J.M.F. dos Santos, Secondary scintillation yield from GEM and THGEM gaseous electron multipliers for direct dark matter search, Phys. Lett. B 714 (2012) 18 [ INSPIRE ].

C. Balan et al., MicrOMEGAs operation in high pressure xenon: Charge and scintillation readout, 2011 JINST 6 P02006 [ arXiv:1009.2960 ] [ INSPIRE ].

J.M.F. dos Santos et al., Development of portable gas proportional scintillation counters for x-ray spectrometry, X-Ray Spectrom. 30 (2001) 373.

NEXT collaboration, J. Renner et al., Background rejection in NEXT using deep neural networks, 2017 JINST 12 T01004 [ arXiv:1609.06202 ] [ INSPIRE ].

T. Himi et al., Emission spectra from Ar-Xe, Ar-Kr, Ar-N2, Ar-CH4, Ar-CO2 and Xe-N2 gas proportional scintillation counters, Nucl. Instrum. Meth. 205 (1983) 591.

C.D.R. Azevedo et al., An homeopathic cure to pure Xenon large diffusion, 2016 JINST 11 C02007 [ arXiv:1511.07189 ] [ INSPIRE ].

NEXT collaboration, C.A.O. Henriques et al., Secondary scintillation yield of xenon with sub-percent levels of CO 2 additive for rare-event detection, Phys. Lett. B 773 (2017) 663 [ arXiv:1704.01623 ] [ INSPIRE ].

P.C.P.S. Simões, J.M.F. dos Santos and C.A.N. Conde, Driftless gas proportional scintillation counter pulse analysis using digital processing techniques, X Ray Spectrom. 30 (2001) 342.

P.C.P.S. Simões et al., A new method for pulse analysis of driftless-gas proportional scintillation counters, Nucl. Instrum. Meth. A 505 (2003) 247.

C.D.R. Azevedo et al., Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives, Nucl. Instrum. Meth. A 877 (2018) 157 [ arXiv:1705.09481 ] [ INSPIRE ].

L.M.P. Fernandes et al., Primary and secondary scintillation measurements in a xenon Gas Proportional Scintillation Counter, 2010 JINST 5 P09006 [Erratum ibid. 5 (2010) A12001] [ arXiv:1009.2719 ] [ INSPIRE ].

C.M.B. Monteiro et al., An argon gas proportional scintillation counter with UV avalanche photodiode scintillation readout, IEEE Trans. Nucl. Sci. 48 (2001) 1081.

J.A.M. Lopes et al., A xenon gas proportional scintillation counter with a UV-sensitive large-area avalanche photodiode, IEEE Trans. Nucl. Sci. 48 (2001) 312.

D.F. Anderson et al., A large area gas scintillation proportional counter, Nucl. Instrum. Meth. 163 (1979) 125.

Z. Kowalski et al., Fano factor implications from gas scintillation proportional counter measurements, Nucl. Instrum. Meth. A 279 (1989) 567.

S.J.C. do Carmo et al., Experimental study of the ω-values and Fano factors of gaseous xenon and Ar-Xe mixtures for X-rays, IEEE Trans. Nucl. Sci. 55 (2008) 2637.

http://magboltz.web.cern.ch/magboltz/ (accessed 14.11.2016).

T.H.V.T. Dias et al., Full-energy absorption of x-ray energies near the Xe L- and K-photoionization thresholds in xenon gas detectors: Simulation and experimental results, J. Appl. Phys. 82 (1997) 2742.

D. Nygren, High-pressure xenon gas electroluminescent TPC for 0νββ-decay search, Nucl. Instrum. Meth. A 603 (2009) 337 [ INSPIRE ].

NEXT collaboration, V. Álvarez et al., The NEXT-100 experiment for neutrinoless double beta decay searches (Conceptual Design Report), arXiv:1106.3630 [ INSPIRE ].

NEXT collaboration, V. Álvarez et al., Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array, 2013 JINST 8 P09011 [ arXiv:1306.0471 ] [ INSPIRE ].

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem