- -

Electroluminescence TPCs at the thermal diffusion limit

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Electroluminescence TPCs at the thermal diffusion limit

Show simple item record

Files in this item

dc.contributor.author Henriques, C. A. O. es_ES
dc.contributor.author Monteiro, C. M. B. es_ES
dc.contributor.author Gonzalez-Diaz, D. es_ES
dc.contributor.author Azevedo, C. D. R. es_ES
dc.contributor.author Freitas, E. D. C. es_ES
dc.contributor.author Mano, R. D. P. es_ES
dc.contributor.author Jorge, M. R. es_ES
dc.contributor.author Fernandes, A. F. M. es_ES
dc.contributor.author Gomez-Cadenas, J. J. es_ES
dc.contributor.author Fernandes, L. M. P. es_ES
dc.contributor.author Álvarez-Puerta, Vicente es_ES
dc.contributor.author Ballester Merelo, Francisco José es_ES
dc.contributor.author Esteve Bosch, Raul es_ES
dc.contributor.author Herrero Bosch, Vicente es_ES
dc.contributor.author Mora Mas, Francisco José es_ES
dc.contributor.author Rodriguez-Samaniego, Javier es_ES
dc.contributor.author Toledo Alarcón, José Francisco es_ES
dc.date.accessioned 2020-06-17T03:39:05Z
dc.date.available 2020-06-17T03:39:05Z
dc.date.issued 2019-01-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146496
dc.description.abstract [EN] The NEXT experiment aims at searching for the hypothetical neutrinoless double-beta decay from the 136Xe isotope using a high-purity xenon TPC. Efficient discrimination of the events through pattern recognition of the topology of primary ionisation tracks is a major requirement for the experiment. However, it is limited by the diffusion of electrons. It is known that the addition of a small fraction of a molecular gas to xenon reduces electron diffusion. On the other hand, the electroluminescence (EL) yield drops and the achievable energy resolution may be compromised. We have studied the effect of adding several molecular gases to xenon (CO2, CH4 and CF4) on the EL yield and energy resolution obtained in a small prototype of driftless gas proportional scintillation counter. We have compared our results on the scintillation characteristics (EL yield and energy resolution) with a microscopic simulation, obtaining the diffusion coefficients in those conditions as well. Accordingly, electron diffusion may be reduced from about 10 mm/ sqrt(¿) for pure xenon down to 2.5 mm/sqrt(m) using additive concentrations of about 0.05%, 0.2% and 0.02% for CO2, CH4 and CF4, respectively. Our results show that CF4 admixtures present the highest EL yield in those conditions, but very poor energy resolution as a result of huge fluctuations observed in the EL formation. CH4 presents the best energy resolution despite the EL yield being the lowest. The results obtained with xenon admixtures are extrapolated to the operational conditions of the NEXT-100 TPC. CO2 and CH4 show potential as molecular additives in a large xenon TPC. While CO2 has some operational constraints, making it difficult to be used in a large TPC, CH4 shows the best performance and stability as molecular additive to be used in the NEXT-100 TPC, with an extrapolated energy resolution of 0.4% at 2.45 MeV for concentrations below 0.4%, which is only slightly worse than the one obtained for pure xenon. We demonstrate the possibility to have an electroluminescence TPC operating very close to the thermal diffusion limit without jeopardizing the TPC performance, if CO2 or CH4 are chosen as additives. es_ES
dc.description.sponsorship The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04, the Severo Ochoa Program SEV-2014-0398 and the Maria de Maetzu Program MDM-2016-0692; the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014, under project UID/FIS/04559/2013 to fund the activities of LIBPhys, and under grants PD/BD/105921/2014, SFRH/BPD/109180/2015 and SFRH/BPD/76842/2011; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-AC02-06CH11357 (Argonne National Laboratory), DE-FG02-13ER42020 (Texas A&M) and DE-SC0017721 (University of Texas at Arlington); and the University of Texas at Arlington. DGD acknowledges Ramon y Cajal program (Spain) under contract number RYC-2015-18820. We also warmly acknowledge the Laboratori Nazionali del Gran Sasso (LNGS) and the Dark Side collaboration for their help with TPB coating of various parts of the NEXT-White TPC. Finally, we are grateful to the Laboratorio Subterraneo de Canfranc for hosting and supporting the NEXT experiment. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of High Energy Physics (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Dark Matter and Double Beta Decay (experiments) es_ES
dc.subject Photon production es_ES
dc.subject Particle correlations and fluctuations es_ES
dc.subject Rare decay es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Electroluminescence TPCs at the thermal diffusion limit es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/JHEP01(2019)027 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/339787/EU/Towards the NEXT generation of bb0nu experimets/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-FG02-13ER42020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/674896/EU/The Elusives Enterprise: Asymmetries of the Invisible Universe/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/690575/EU/InvisiblesPlus/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC02-07CH11359/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/740055/EU/Molecule for low diffusion TPCs for rare event searches/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-SC0017721/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2014-0398/ES/INSTITUTO DE FISICA CORPUSCULAR (IFIC)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/PTDC/FIS-NUC%2F2525%2F2014/PT/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MDM-2016-0692/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/UID/FIS%2F04559%2F2013/PT/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F120/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/PD/PD%2FBD%2F105921%2F2014/PT/R&D on the feasibility of Ba tagging in High Pressure Xenon Chambers/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//SEJI%2F2017%2F011/ES/Aprendizaje profundo en análisis de detectores en física/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F109180%2F2015/PT/
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F76842%2F2011/PT/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2015-18820/ES/RYC-2015-18820/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2014-53371-C4-4-R/ES/CONSTRUCCION, VALIDACION Y OPERACION DE LA ELECTRONICA DEL EXPERIMENTO NEXT/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Henriques, CAO.; Monteiro, CMB.; Gonzalez-Diaz, D.; Azevedo, CDR.; Freitas, EDC.; Mano, RDP.; Jorge, MR.... (2019). Electroluminescence TPCs at the thermal diffusion limit. Journal of High Energy Physics (Online). 1:1-20. https://doi.org/10.1007/JHEP01(2019)027 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/JHEP01(2019)027 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1 es_ES
dc.identifier.eissn 1029-8479 es_ES
dc.relation.pasarela S\375333 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.description.references NEXT collaboration, J. Martín-Albo et al., Sensitivity of NEXT-100 to neutrinoless double beta decay, JHEP 05 (2016) 159 [ arXiv:1511.09246 ] [ INSPIRE ]. es_ES
dc.description.references T. Brunner et al., An RF-only ion-funnel for extraction from high-pressure gases, Intern. J. Mass Spectrom. 379 (2015) 110 [ INSPIRE ]. es_ES
dc.description.references PANDAX-III collaboration, J. Galan, Microbulk MicrOMEGAs for the search of 0νββ of 136 Xe in the PandaX-III experiment, 2016 JINST 11 P04024 [ arXiv:1512.09034 ] [ INSPIRE ]. es_ES
dc.description.references D. Yu. Akimov, A.A. Burenkov, V.F. Kuzichev, V.L. Morgunov and V.N. Solovev, Low background experiments with high pressure gas scintillation proportional detector, physics/9704021 [ INSPIRE ]. es_ES
dc.description.references Yu. M. Gavrilyuk et al., A technique for searching for the 2K capture in 124 Xe with a copper proportional counter, Phys. Atom. Nucl. 78 (2015) 1563 [ INSPIRE ]. es_ES
dc.description.references D.R. Nygren, Columnar recombination: a tool for nuclear recoil directional sensitivity in a xenon-based direct detection WIMP search, J. Phys. Conf. Ser. 460 (2013) 012006 [ INSPIRE ]. es_ES
dc.description.references XENON collaboration, E. Aprile et al., First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [ arXiv:1705.06655 ] [ INSPIRE ]. es_ES
dc.description.references XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [ arXiv:1207.5988 ] [ INSPIRE ]. es_ES
dc.description.references LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [ arXiv:1608.07648 ] [ INSPIRE ]. es_ES
dc.description.references PandaX-II collaboration, X. Cui et al., Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [ arXiv:1708.06917 ] [ INSPIRE ]. es_ES
dc.description.references EXO collaboration, J.B. Albert et al., Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector, Phys. Rev. Lett. 120 (2018) 072701 [ arXiv:1707.08707 ] [ INSPIRE ]. es_ES
dc.description.references KamLAND-Zen collaboration, A. Gando et al., Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503 [ arXiv:1605.02889 ] [ INSPIRE ]. es_ES
dc.description.references XMASS collaboration, K. Abe et al., Search for two-neutrino double electron capture on 124 Xe with the XMASS-I detector, Phys. Lett. B 759 (2016) 64 [ arXiv:1510.00754 ] [ INSPIRE ]. es_ES
dc.description.references XENON collaboration, E. Aprile et al., Search for two-neutrino double electron capture of 124 Xe with XENON100, Phys. Rev. C 95 (2017) 024605 [ arXiv:1609.03354 ] [ INSPIRE ]. es_ES
dc.description.references R. Lüscher et al., Search for ββ decay in 136 Xe: new results from the Gotthard experiment, Phys. Lett. B 434 (1998) 407 [ INSPIRE ]. es_ES
dc.description.references NEXT collaboration, P. Ferrario et al., First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment, JHEP 01 (2016) 104 [ arXiv:1507.05902 ] [ INSPIRE ]. es_ES
dc.description.references NEXT collaboration, D. Lorca et al., Characterisation of NEXT-DEMO using xenon K α X-rays, 2014 JINST 9 P10007 [ arXiv:1407.3966 ] [ INSPIRE ]. es_ES
dc.description.references NEXT collaboration, D. González-Díaz et al., Accurate γ and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm, Nucl. Instrum. Meth. A 804 (2015) 8 [ arXiv:1504.03678 ] [ INSPIRE ]. es_ES
dc.description.references C.M.B. Monteiro et al., Secondary Scintillation Yield in Pure Xenon, 2007 JINST 2 P05001 [ physics/0702142 ] [ INSPIRE ]. es_ES
dc.description.references C.M.B. Monteiro, J.A.M. Lopes, J.F. C.A. Veloso and J.M.F. dos Santos, Secondary scintillation yield in pure argon, Phys. Lett. B 668 (2008) 167 [ INSPIRE ]. es_ES
dc.description.references E.D.C. Freitas et al., Secondary scintillation yield in high-pressure xenon gas for neutrinoless double beta decay (0νββ) search, Phys. Lett. B 684 (2010) 205 [ INSPIRE ]. es_ES
dc.description.references C.M.B. Monteiro et al., Secondary scintillation yield from gaseous micropattern electron multipliers in direct dark matter detection, Phys. Lett. B 677 (2009) 133 [ INSPIRE ]. es_ES
dc.description.references C.M.B. Monteiro, L.M.P. Fernandes, J.F. C.A. Veloso, C.A.B. Oliveira and J.M.F. dos Santos, Secondary scintillation yield from GEM and THGEM gaseous electron multipliers for direct dark matter search, Phys. Lett. B 714 (2012) 18 [ INSPIRE ]. es_ES
dc.description.references C. Balan et al., MicrOMEGAs operation in high pressure xenon: Charge and scintillation readout, 2011 JINST 6 P02006 [ arXiv:1009.2960 ] [ INSPIRE ]. es_ES
dc.description.references J.M.F. dos Santos et al., Development of portable gas proportional scintillation counters for x-ray spectrometry, X-Ray Spectrom. 30 (2001) 373. es_ES
dc.description.references NEXT collaboration, J. Renner et al., Background rejection in NEXT using deep neural networks, 2017 JINST 12 T01004 [ arXiv:1609.06202 ] [ INSPIRE ]. es_ES
dc.description.references T. Himi et al., Emission spectra from Ar-Xe, Ar-Kr, Ar-N2, Ar-CH4, Ar-CO2 and Xe-N2 gas proportional scintillation counters, Nucl. Instrum. Meth. 205 (1983) 591. es_ES
dc.description.references C.D.R. Azevedo et al., An homeopathic cure to pure Xenon large diffusion, 2016 JINST 11 C02007 [ arXiv:1511.07189 ] [ INSPIRE ]. es_ES
dc.description.references NEXT collaboration, C.A.O. Henriques et al., Secondary scintillation yield of xenon with sub-percent levels of CO 2 additive for rare-event detection, Phys. Lett. B 773 (2017) 663 [ arXiv:1704.01623 ] [ INSPIRE ]. es_ES
dc.description.references P.C.P.S. Simões, J.M.F. dos Santos and C.A.N. Conde, Driftless gas proportional scintillation counter pulse analysis using digital processing techniques, X Ray Spectrom. 30 (2001) 342. es_ES
dc.description.references P.C.P.S. Simões et al., A new method for pulse analysis of driftless-gas proportional scintillation counters, Nucl. Instrum. Meth. A 505 (2003) 247. es_ES
dc.description.references C.D.R. Azevedo et al., Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives, Nucl. Instrum. Meth. A 877 (2018) 157 [ arXiv:1705.09481 ] [ INSPIRE ]. es_ES
dc.description.references L.M.P. Fernandes et al., Primary and secondary scintillation measurements in a xenon Gas Proportional Scintillation Counter, 2010 JINST 5 P09006 [Erratum ibid. 5 (2010) A12001] [ arXiv:1009.2719 ] [ INSPIRE ]. es_ES
dc.description.references C.M.B. Monteiro et al., An argon gas proportional scintillation counter with UV avalanche photodiode scintillation readout, IEEE Trans. Nucl. Sci. 48 (2001) 1081. es_ES
dc.description.references J.A.M. Lopes et al., A xenon gas proportional scintillation counter with a UV-sensitive large-area avalanche photodiode, IEEE Trans. Nucl. Sci. 48 (2001) 312. es_ES
dc.description.references D.F. Anderson et al., A large area gas scintillation proportional counter, Nucl. Instrum. Meth. 163 (1979) 125. es_ES
dc.description.references Z. Kowalski et al., Fano factor implications from gas scintillation proportional counter measurements, Nucl. Instrum. Meth. A 279 (1989) 567. es_ES
dc.description.references S.J.C. do Carmo et al., Experimental study of the ω-values and Fano factors of gaseous xenon and Ar-Xe mixtures for X-rays, IEEE Trans. Nucl. Sci. 55 (2008) 2637. es_ES
dc.description.references http://magboltz.web.cern.ch/magboltz/ (accessed 14.11.2016). es_ES
dc.description.references T.H.V.T. Dias et al., Full-energy absorption of x-ray energies near the Xe L- and K-photoionization thresholds in xenon gas detectors: Simulation and experimental results, J. Appl. Phys. 82 (1997) 2742. es_ES
dc.description.references D. Nygren, High-pressure xenon gas electroluminescent TPC for 0νββ-decay search, Nucl. Instrum. Meth. A 603 (2009) 337 [ INSPIRE ]. es_ES
dc.description.references NEXT collaboration, V. Álvarez et al., The NEXT-100 experiment for neutrinoless double beta decay searches (Conceptual Design Report), arXiv:1106.3630 [ INSPIRE ]. es_ES
dc.description.references NEXT collaboration, V. Álvarez et al., Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array, 2013 JINST 8 P09011 [ arXiv:1306.0471 ] [ INSPIRE ]. es_ES


This item appears in the following Collection(s)

Show simple item record