- -

Transcriptomic changes in Cucurbita pepo fruit after cold storage: differential response between two cultivars contrasting in chilling sensitivity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transcriptomic changes in Cucurbita pepo fruit after cold storage: differential response between two cultivars contrasting in chilling sensitivity

Mostrar el registro completo del ítem

Carvajal, F.; Rosales, R.; Palma, F.; Manzano, S.; Cañizares Sales, J.; Jamilena, M.; Garrido, D. (2018). Transcriptomic changes in Cucurbita pepo fruit after cold storage: differential response between two cultivars contrasting in chilling sensitivity. BMC Genomics. 19. https://doi.org/10.1186/s12864-018-4500-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/146497

Ficheros en el ítem

Metadatos del ítem

Título: Transcriptomic changes in Cucurbita pepo fruit after cold storage: differential response between two cultivars contrasting in chilling sensitivity
Autor: Carvajal, F Rosales, R Palma, F Manzano, S. Cañizares Sales, Joaquín Jamilena, M. Garrido, D.
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Background: Zucchini fruit is susceptible to chilling injury (CI), but the response to low storage temperature is cultivar dependent. Previous reports about the response of zucchini fruit to chilling storage have been ...[+]
Palabras clave: Zucchini fruit , Postharvest physiology , Cold tolerance , Transcriptomic profiling , Stress response
Derechos de uso: Reconocimiento (by)
Fuente:
BMC Genomics. (issn: 1471-2164 )
DOI: 10.1186/s12864-018-4500-9
Editorial:
Springer (Biomed Central Ltd.)
Versión del editor: https://doi.org/10.1186/s12864-018-4500-9
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//AGL2014-54598-C2-2-R/ES/DESARROLLO DE HERRAMIENTAS FISIOLOGICAS Y GENOMICAS PARA MEJORAR LA CALIDAD POSTCOSECHA DEL FRUTO DE CALABACIN/
Agradecimientos:
This research has been funded by the Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional FEDER (Project AGL2014-54598-C2).
Tipo: Artículo

References

Martínez-Téllez MA, Ramos-Clamont MG, Gardea AA, Vargas-Arispuro I. Effect of infiltrated polyamines on polygalacturonase activity and chilling injury responses in zucchini squash (Cucurbita Pepo L.). Biochem Biophys Res Commun. 2002;295(1):98–101.

Valenzuela J, Manzano S, Palma F, Carvajal F, Garrido D, Jamilena M. Oxidative stress associated with chilling injury in immature fruit: postharvest technological and biotechnological solutions. Int J Mol Sci. 2017;18(7):1467.

Carvajal F, Palma F, Jiménez-Muñoz R, Jamilena M, Pulido A, Garrido D. Unravelling the role of abscisic acid in chilling tolerance of zucchini during postharvest cold storage. Postharvest Biol Technol. 2017;133:26–35. [+]
Martínez-Téllez MA, Ramos-Clamont MG, Gardea AA, Vargas-Arispuro I. Effect of infiltrated polyamines on polygalacturonase activity and chilling injury responses in zucchini squash (Cucurbita Pepo L.). Biochem Biophys Res Commun. 2002;295(1):98–101.

Valenzuela J, Manzano S, Palma F, Carvajal F, Garrido D, Jamilena M. Oxidative stress associated with chilling injury in immature fruit: postharvest technological and biotechnological solutions. Int J Mol Sci. 2017;18(7):1467.

Carvajal F, Palma F, Jiménez-Muñoz R, Jamilena M, Pulido A, Garrido D. Unravelling the role of abscisic acid in chilling tolerance of zucchini during postharvest cold storage. Postharvest Biol Technol. 2017;133:26–35.

Wang CY. Effect of abscisic acid on chilling injury of zucchini squash. J Plant Growth Regul. 1991;10(1):101.

Megías Z, Martínez C, Manzano S, Barrera A, Rosales R, Valenzuela JL, Garrido D, Jamilena M. Cold-induced ethylene in relation to chilling injury and chilling sensitivity in the non-climacteric fruit of zucchini (Cucurbita Pepo L.). LWT Food Sci Technol. 2014;57(1):194–9.

Megías Z, Martínez C, Manzano S, García A, del Mar R-FM, Valenzuela JL, Garrido D, Jamilena M. Ethylene biosynthesis and signaling elements involved in chilling injury and other postharvest quality traits in the non-climacteric fruit of zucchini (Cucurbita Pepo). Postharvest Biol Technol. 2016;113:48–57.

Palma F, Carvajal F, Jamilena M, Garrido D. Contribution of polyamines and other related metabolites to the maintenance of zucchini fruit quality during cold storage. Plant Physiol Biochem. 2014;82:161–71.

Palma F, Carvajal F, Lluch C, Jamilena M, Garrido D. Changes in carbohydrate content in zucchini fruit (Cucurbita Pepo L.) under low temperature stress. Plant Sci. 2014;217–218:78–86.

Carvajal F, Martinez C, Jamilena M, Garrido D. Differential response of zucchini varieties to low storage temperature. Sci Hortic. 2011;130(1):90–6.

Carvajal Moreno F. Mejora de la vida comercial, calidad y conservación del fruto de calabacín (Cucurbita pepo l.). Universidad de Granada: Granada; 2014.

Megías Z, Martínez C, Manzano S, García A, MdM R-F, Garrido D, Valenzuela JL, Jamilena M. Individual shrink wrapping of zucchini fruit improves postharvest chilling tolerance associated with a reduction in ethylene production and oxidative stress metabolites. PLoS One. 2015;10(7):e0133058.

Carvajal F, Palma F, Jamilena M, Garrido D. Preconditioning treatment induces chilling tolerance in zucchini fruit improving different physiological mechanisms against cold injury. Ann Appl Biol. 2015;166(2):340–54.

Zheng Y, Fung RWM, Wang SY, Wang CY. Transcript levels of antioxidative genes and oxygen radical scavenging enzyme activities in chilled zucchini squash in response to superatmospheric oxygen. Postharvest Biol Technol. 2008;47(2):151–8.

Mao L-C, Wang G-Z, Zhu C-G, Pang H-Q. Involvement of phospholipase D and lipoxygenase in response to chilling stress in postharvest cucumber fruits. Plant Sci. 2007;172(2):400–5.

Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys. 1968;125(1):189–98.

Alexieva V, Sergiev I, Mapelli S, Karanov E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001;24(12):1337–44.

Verwoerd TC, Dekker BM, Hoekema A. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 1989;17(6):2362.

Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Meth. 2012;9(4):357–9.

Montero-Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Martí-Gómez C, Ferriol M, Gómez P, Jamilena M, Mueller L, Picó B, Cañizares J. De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbitagenus. Plant Biotechnol. J; 2017. https://doi.org/10.1111/pbi.12860 .

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323.

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80.

Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, et al. Orchestrating high-throughput genomic analysis with bioconductor. Nat Meth. 2015;12(2):115–21.

Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, et al. TM4: a free, open-source system for microarray data management and analysis. BioTechniques. 2003;34(2):374–8.

Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.

Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, et al. Arabidopsis Transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling Array. Plant Cell Physiol. 2008;49(8):1135–49.

Wang X-C, Zhao Q-Y, Ma C-L, Zhang Z-H, Cao H-L, Kong Y-M, Yue C, Hao X-Y, Chen L, Ma J-Q, et al. Global transcriptome profiles of Camellia Sinensis during cold acclimation. BMC Genomics. 2013;14(1):415.

Cruz-Mendívil A, López-Valenzuela JA, Calderón-Vázquez CL, Vega-García MO, Reyes-Moreno C, Valdez-Ortiz A. Transcriptional changes associated with chilling tolerance and susceptibility in ‘micro-tom’ tomato fruit using RNA-Seq. Postharvest Biol Technol. 2015;99:141–51.

Song Y, Chen Q, Ci D, Zhang D. Transcriptome profiling reveals differential transcript abundance in response to chilling stress in Populus Simonii. Plant Cell Rep. 2013;32(9):1407–25.

An D, Yang J, Zhang P. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress. BMC Genomics. 2012;13(1):64.

Tan H, Huang H, Tie M, Tang Y, Lai Y, Li H. Transcriptome profiling of two asparagus bean (Vigna Unguiculata subsp. sesquipedalis) cultivars differing in chilling tolerance under cold stress. PLoS One. 2016;11(3):e0151105.

Rosales R, Romero I, Fernandez-Caballero C, Escribano MI, Merodio C, Sanchez-Ballesta MT. Low temperature and short-term high-CO2 treatment in postharvest storage of table grapes at two maturity stages: effects on Transcriptome profiling. Front Plant Sci. 2016;7:1020.

Wang X, Shan X, Wu Y, Su S, Li S, Liu H, Han J, Xue C, Yuan Y. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings. J Proteome. 2016;146:14–24.

Cai H, Yuan X, Pan J, Li H, Wu Z, Wang Y. Biochemical and proteomic analysis of grape berries (Vitis Labruscana) during cold storage upon postharvest salicylic acid treatment. J Agric Food Chem. 2014;62(41):10118–25.

Palma F, Carvajal F, Jamilena M, Garrido D. Putrescine treatment increases the antioxidant response and carbohydrate content in zucchini fruit stored at low temperature. Postharvest Biol Technol. 2016;118:68–70.

Stone SL. The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front Plant Sci. 2014;5:135.

Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S. The ubiquitin–proteasome system: central modifier of plant signalling. New Phytol. 2012;196(1):13–28.

Purvis AC, Shewfelt RL. Does the alternative pathway ameliorate chilling injury in sensitive plant tissues? Physiol Plant. 1993;88(4):712–8.

Fung RWM, Wang CY, Smith DL, Gross KC, Tao Y, Tian M. Characterization of alternative oxidase (AOX) gene expression in response to methyl salicylate and methyl jasmonate pre-treatment and low temperature in tomatoes. J Plant Physiol. 2006;163(10):1049–60.

Fung RWM, Wang CY, Smith DL, Gross KC, Tian M. MeSA and MeJA increase steady-state transcript levels of alternative oxidase and resistance against chilling injury in sweet peppers (Capsicum Annuum L.). Plant Sci. 2004;166(3):711–9.

Miura K, Furumoto T. Cold signaling and cold response in plants. Int J Mol Sci. 2013;14(3):5312.

Monroy AF, Dhindsa RS. Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. Plant Cell. 1995;7(3):321–31.

Tomaz T, Bagard M, Pracharoenwattana I, Lindén P, Lee CP, Carroll AJ, Ströher E, Smith SM, Gardeström P, Millar AH. Mitochondrial Malate Dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis. Plant Physiol. 2010;154(3):1143–57.

Wang QJ, Sun H, Dong QL, Sun TY, Jin ZX, Hao YJ, Yao YX. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants. Plant Biotechnol J. 2016;14(10):1986–97.

Sperling P, Heinz E. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta. 2003;1632(1–3):1–15.

Nagano M, Ishikawa T, Ogawa Y, Iwabuchi M, Nakasone A, Shimamoto K, Uchimiya H, Kawai-Yamada M. Arabidopsis Bax inhibitor-1 promotes sphingolipid synthesis during cold stress by interacting with ceramide-modifying enzymes. Planta. 2014;240(1):77–89.

Karim S, Lundh D, Holmström K-O, Mandal A, Pirhonen M. Structural and functional characterization of AtPTR3, a stress-induced peptide transporter of Arabidopsis. J Mol Model. 2005;11(3):226–36.

Karim S, Holmström K-O, Mandal A, Dahl P, Hohmann S, Brader G, Palva ET, Pirhonen M. AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis. Planta. 2007;225(6):1431–45.

Dametto A, Sperotto RA, Adamski JM, Blasi ÉAR, Cargnelutti D, de Oliveira LFV, Ricachenevsky FK, Fregonezi JN, Mariath JEA, da Cruz RP, et al. Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of contrasting indica genotypes. Plant Sci. 2015;238:1–12.

Xu W, Jiao Y, Li R, Zhang N, Xiao D, Ding X, Wang Z. Chinese wild-growing Vitis Amurensis ICE1 and ICE2 encode MYC-type bHLH transcription activators that regulate cold tolerance in Arabidopsis. PLoS One. 2014;9(7):e102303.

Yang Q-S, Gao J, He W-D, Dou T-X, Ding L-J, Wu J-H, Li C-Y, Peng X-X, Zhang S, Yi G-J. Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genomics. 2015;16(1):446.

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010;15(10):573–81.

Zhao J-L, Pan J-S, Guan Y, Zhang W-W, Bie B-B, Wang Y-L, He H-L, Lian H-L, Cai R. Micro-trichome as a class I homeodomain-leucine zipper gene regulates multicellular trichome development in Cucumis Sativus. J Integr Plant Biol. 2015;57(11):925–35.

Zhao J-L, Wang Y-L, Yao D-Q, Zhu W-Y, Chen L, He H-L, Pan J-S, Cai R. Transcriptome profiling of trichome-less reveals genes associated with multicellular trichome development in Cucumis Sativus. Mol Gen Genomics. 2015;290(5):2007–18.

Dietz K-J, Vogel MO, Viehhauser A. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma. 2010;245(1):3–14.

Feng J-X, Liu D, Pan Y, Gong W, Ma L-G, Luo J-C, Deng XW, Zhu Y-X. An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental Responsivenessof the Arabidopsis AP2/EREBP transcription factor gene family. Plant Mol Biol. 2005;59(6):853–68.

Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis Thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci. 1997;94(3):1035–40.

Gilmour SJ, Fowler SG, Thomashow MF. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol. 2004;54(5):767–81.

Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P. The cold-inducible CBF1 factor–dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on Gibberellin metabolism. Plant Cell. 2008;20(8):2117–29.

Zhu A, Li W, Ye J, Sun X, Ding Y, Cheng Y, Deng X. Microarray expression profiling of postharvest Ponkan mandarin (Citrus Reticulata) fruit under cold storage reveals regulatory gene candidates and implications on soluble sugars metabolism. J Integr Plant Biol. 2011;53(5):358–74.

Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu J-K. Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett. 2006;580(28–29):6537–42.

Rossel JB, Wilson PB, Hussain D, Woo NS, Gordon MJ, Mewett OP, Howell KA, Whelan J, Kazan K, Pogson BJ. Systemic and intracellular responses to Photooxidative stress in Arabidopsis. Plant Cell. 2007;19(12):4091–110.

Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 2004;136(1):2734–46.

Nguyen XC, Kim SH, Hussain S, An J, Yoo Y, Han HJ, Yoo JS, Lim CO, Yun D-J, Chung WS. A positive transcription factor in osmotic stress tolerance, ZAT10, is regulated by MAP kinases in Arabidopsis. J Plant Biol. 2016;59(1):55–61.

Denison FC, Paul A-L, Zupanska AK, Ferl RJ. 14-3-3 proteins in plant physiology. Semin Cell Dev Biol. 2011;22(7):720–7.

Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. 2010;61:651–79.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem