- -

Transcriptomic changes in Cucurbita pepo fruit after cold storage: differential response between two cultivars contrasting in chilling sensitivity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transcriptomic changes in Cucurbita pepo fruit after cold storage: differential response between two cultivars contrasting in chilling sensitivity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carvajal, F es_ES
dc.contributor.author Rosales, R es_ES
dc.contributor.author Palma, F es_ES
dc.contributor.author Manzano, S. es_ES
dc.contributor.author Cañizares Sales, Joaquín es_ES
dc.contributor.author Jamilena, M. es_ES
dc.contributor.author Garrido, D. es_ES
dc.date.accessioned 2020-06-17T03:39:08Z
dc.date.available 2020-06-17T03:39:08Z
dc.date.issued 2018-02-07 es_ES
dc.identifier.issn 1471-2164 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146497
dc.description.abstract [EN] Background: Zucchini fruit is susceptible to chilling injury (CI), but the response to low storage temperature is cultivar dependent. Previous reports about the response of zucchini fruit to chilling storage have been focused on the physiology and biochemistry of this process, with little information about the molecular mechanisms underlying it. In this work, we present a comprehensive analysis of transcriptomic changes that take place after cold storage in zucchini fruit of two commercial cultivars with contrasting response to chilling stress. Results: RNA-Seq analysis was conducted in exocarp of fruit at harvest and after 14 days of storage at 4 and 20 degrees C. Differential expressed genes (DEGs) were obtained comparing fruit stored at 4 degrees C with their control at 20 degrees C, and then specific and common up and down-regulated DEGs of each cultivar were identified. Functional analysis of these DEGs identified similarities between the response of zucchini fruit to low temperature and other stresses, with an important number of GO terms related to biotic and abiotic stresses overrepresented in both cultivars. This study also revealed several molecular mechanisms that could be related to chilling tolerance, since they were up-regulated in cv. Natura (CI tolerant) or down-regulated in cv. Sinatra (CI sensitive). These mechanisms were mainly those related to carbohydrate and energy metabolism, transcription, signal transduction, and protein transport and degradation. Among DEGs belonging to these pathways, we selected candidate genes that could regulate or promote chilling tolerance in zucchini fruit including the transcription factors MYB76-like, ZAT10-like, DELLA protein GAIP, and AP2/ERF domain-containing protein. Conclusions: This study provides a broader understanding of the important mechanisms and processes related to coping with low temperature stress in zucchini fruit and allowed the identification of some candidate genes that may be involved in the acquisition of chilling tolerance in this crop. These genes will be the basis of future studies aimed to identify markers involved in cold tolerance and aid in zucchini breeding programs. es_ES
dc.description.sponsorship This research has been funded by the Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional FEDER (Project AGL2014-54598-C2). es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BMC Genomics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Zucchini fruit es_ES
dc.subject Postharvest physiology es_ES
dc.subject Cold tolerance es_ES
dc.subject Transcriptomic profiling es_ES
dc.subject Stress response es_ES
dc.subject.classification GENETICA es_ES
dc.title Transcriptomic changes in Cucurbita pepo fruit after cold storage: differential response between two cultivars contrasting in chilling sensitivity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12864-018-4500-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-54598-C2-2-R/ES/DESARROLLO DE HERRAMIENTAS FISIOLOGICAS Y GENOMICAS PARA MEJORAR LA CALIDAD POSTCOSECHA DEL FRUTO DE CALABACIN/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Carvajal, F.; Rosales, R.; Palma, F.; Manzano, S.; Cañizares Sales, J.; Jamilena, M.; Garrido, D. (2018). Transcriptomic changes in Cucurbita pepo fruit after cold storage: differential response between two cultivars contrasting in chilling sensitivity. BMC Genomics. 19. https://doi.org/10.1186/s12864-018-4500-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12864-018-4500-9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.identifier.pmid 29415652 es_ES
dc.identifier.pmcid PMC5804050 es_ES
dc.relation.pasarela S\378446 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Martínez-Téllez MA, Ramos-Clamont MG, Gardea AA, Vargas-Arispuro I. Effect of infiltrated polyamines on polygalacturonase activity and chilling injury responses in zucchini squash (Cucurbita Pepo L.). Biochem Biophys Res Commun. 2002;295(1):98–101. es_ES
dc.description.references Valenzuela J, Manzano S, Palma F, Carvajal F, Garrido D, Jamilena M. Oxidative stress associated with chilling injury in immature fruit: postharvest technological and biotechnological solutions. Int J Mol Sci. 2017;18(7):1467. es_ES
dc.description.references Carvajal F, Palma F, Jiménez-Muñoz R, Jamilena M, Pulido A, Garrido D. Unravelling the role of abscisic acid in chilling tolerance of zucchini during postharvest cold storage. Postharvest Biol Technol. 2017;133:26–35. es_ES
dc.description.references Wang CY. Effect of abscisic acid on chilling injury of zucchini squash. J Plant Growth Regul. 1991;10(1):101. es_ES
dc.description.references Megías Z, Martínez C, Manzano S, Barrera A, Rosales R, Valenzuela JL, Garrido D, Jamilena M. Cold-induced ethylene in relation to chilling injury and chilling sensitivity in the non-climacteric fruit of zucchini (Cucurbita Pepo L.). LWT Food Sci Technol. 2014;57(1):194–9. es_ES
dc.description.references Megías Z, Martínez C, Manzano S, García A, del Mar R-FM, Valenzuela JL, Garrido D, Jamilena M. Ethylene biosynthesis and signaling elements involved in chilling injury and other postharvest quality traits in the non-climacteric fruit of zucchini (Cucurbita Pepo). Postharvest Biol Technol. 2016;113:48–57. es_ES
dc.description.references Palma F, Carvajal F, Jamilena M, Garrido D. Contribution of polyamines and other related metabolites to the maintenance of zucchini fruit quality during cold storage. Plant Physiol Biochem. 2014;82:161–71. es_ES
dc.description.references Palma F, Carvajal F, Lluch C, Jamilena M, Garrido D. Changes in carbohydrate content in zucchini fruit (Cucurbita Pepo L.) under low temperature stress. Plant Sci. 2014;217–218:78–86. es_ES
dc.description.references Carvajal F, Martinez C, Jamilena M, Garrido D. Differential response of zucchini varieties to low storage temperature. Sci Hortic. 2011;130(1):90–6. es_ES
dc.description.references Carvajal Moreno F. Mejora de la vida comercial, calidad y conservación del fruto de calabacín (Cucurbita pepo l.). Universidad de Granada: Granada; 2014. es_ES
dc.description.references Megías Z, Martínez C, Manzano S, García A, MdM R-F, Garrido D, Valenzuela JL, Jamilena M. Individual shrink wrapping of zucchini fruit improves postharvest chilling tolerance associated with a reduction in ethylene production and oxidative stress metabolites. PLoS One. 2015;10(7):e0133058. es_ES
dc.description.references Carvajal F, Palma F, Jamilena M, Garrido D. Preconditioning treatment induces chilling tolerance in zucchini fruit improving different physiological mechanisms against cold injury. Ann Appl Biol. 2015;166(2):340–54. es_ES
dc.description.references Zheng Y, Fung RWM, Wang SY, Wang CY. Transcript levels of antioxidative genes and oxygen radical scavenging enzyme activities in chilled zucchini squash in response to superatmospheric oxygen. Postharvest Biol Technol. 2008;47(2):151–8. es_ES
dc.description.references Mao L-C, Wang G-Z, Zhu C-G, Pang H-Q. Involvement of phospholipase D and lipoxygenase in response to chilling stress in postharvest cucumber fruits. Plant Sci. 2007;172(2):400–5. es_ES
dc.description.references Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys. 1968;125(1):189–98. es_ES
dc.description.references Alexieva V, Sergiev I, Mapelli S, Karanov E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001;24(12):1337–44. es_ES
dc.description.references Verwoerd TC, Dekker BM, Hoekema A. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 1989;17(6):2362. es_ES
dc.description.references Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Meth. 2012;9(4):357–9. es_ES
dc.description.references Montero-Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Martí-Gómez C, Ferriol M, Gómez P, Jamilena M, Mueller L, Picó B, Cañizares J. De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbitagenus. Plant Biotechnol. J; 2017. https://doi.org/10.1111/pbi.12860 . es_ES
dc.description.references Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323. es_ES
dc.description.references Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. es_ES
dc.description.references Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80. es_ES
dc.description.references Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, et al. Orchestrating high-throughput genomic analysis with bioconductor. Nat Meth. 2015;12(2):115–21. es_ES
dc.description.references Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, et al. TM4: a free, open-source system for microarray data management and analysis. BioTechniques. 2003;34(2):374–8. es_ES
dc.description.references Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6. es_ES
dc.description.references Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8. es_ES
dc.description.references Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, et al. Arabidopsis Transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling Array. Plant Cell Physiol. 2008;49(8):1135–49. es_ES
dc.description.references Wang X-C, Zhao Q-Y, Ma C-L, Zhang Z-H, Cao H-L, Kong Y-M, Yue C, Hao X-Y, Chen L, Ma J-Q, et al. Global transcriptome profiles of Camellia Sinensis during cold acclimation. BMC Genomics. 2013;14(1):415. es_ES
dc.description.references Cruz-Mendívil A, López-Valenzuela JA, Calderón-Vázquez CL, Vega-García MO, Reyes-Moreno C, Valdez-Ortiz A. Transcriptional changes associated with chilling tolerance and susceptibility in ‘micro-tom’ tomato fruit using RNA-Seq. Postharvest Biol Technol. 2015;99:141–51. es_ES
dc.description.references Song Y, Chen Q, Ci D, Zhang D. Transcriptome profiling reveals differential transcript abundance in response to chilling stress in Populus Simonii. Plant Cell Rep. 2013;32(9):1407–25. es_ES
dc.description.references An D, Yang J, Zhang P. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress. BMC Genomics. 2012;13(1):64. es_ES
dc.description.references Tan H, Huang H, Tie M, Tang Y, Lai Y, Li H. Transcriptome profiling of two asparagus bean (Vigna Unguiculata subsp. sesquipedalis) cultivars differing in chilling tolerance under cold stress. PLoS One. 2016;11(3):e0151105. es_ES
dc.description.references Rosales R, Romero I, Fernandez-Caballero C, Escribano MI, Merodio C, Sanchez-Ballesta MT. Low temperature and short-term high-CO2 treatment in postharvest storage of table grapes at two maturity stages: effects on Transcriptome profiling. Front Plant Sci. 2016;7:1020. es_ES
dc.description.references Wang X, Shan X, Wu Y, Su S, Li S, Liu H, Han J, Xue C, Yuan Y. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings. J Proteome. 2016;146:14–24. es_ES
dc.description.references Cai H, Yuan X, Pan J, Li H, Wu Z, Wang Y. Biochemical and proteomic analysis of grape berries (Vitis Labruscana) during cold storage upon postharvest salicylic acid treatment. J Agric Food Chem. 2014;62(41):10118–25. es_ES
dc.description.references Palma F, Carvajal F, Jamilena M, Garrido D. Putrescine treatment increases the antioxidant response and carbohydrate content in zucchini fruit stored at low temperature. Postharvest Biol Technol. 2016;118:68–70. es_ES
dc.description.references Stone SL. The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front Plant Sci. 2014;5:135. es_ES
dc.description.references Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S. The ubiquitin–proteasome system: central modifier of plant signalling. New Phytol. 2012;196(1):13–28. es_ES
dc.description.references Purvis AC, Shewfelt RL. Does the alternative pathway ameliorate chilling injury in sensitive plant tissues? Physiol Plant. 1993;88(4):712–8. es_ES
dc.description.references Fung RWM, Wang CY, Smith DL, Gross KC, Tao Y, Tian M. Characterization of alternative oxidase (AOX) gene expression in response to methyl salicylate and methyl jasmonate pre-treatment and low temperature in tomatoes. J Plant Physiol. 2006;163(10):1049–60. es_ES
dc.description.references Fung RWM, Wang CY, Smith DL, Gross KC, Tian M. MeSA and MeJA increase steady-state transcript levels of alternative oxidase and resistance against chilling injury in sweet peppers (Capsicum Annuum L.). Plant Sci. 2004;166(3):711–9. es_ES
dc.description.references Miura K, Furumoto T. Cold signaling and cold response in plants. Int J Mol Sci. 2013;14(3):5312. es_ES
dc.description.references Monroy AF, Dhindsa RS. Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. Plant Cell. 1995;7(3):321–31. es_ES
dc.description.references Tomaz T, Bagard M, Pracharoenwattana I, Lindén P, Lee CP, Carroll AJ, Ströher E, Smith SM, Gardeström P, Millar AH. Mitochondrial Malate Dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis. Plant Physiol. 2010;154(3):1143–57. es_ES
dc.description.references Wang QJ, Sun H, Dong QL, Sun TY, Jin ZX, Hao YJ, Yao YX. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants. Plant Biotechnol J. 2016;14(10):1986–97. es_ES
dc.description.references Sperling P, Heinz E. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta. 2003;1632(1–3):1–15. es_ES
dc.description.references Nagano M, Ishikawa T, Ogawa Y, Iwabuchi M, Nakasone A, Shimamoto K, Uchimiya H, Kawai-Yamada M. Arabidopsis Bax inhibitor-1 promotes sphingolipid synthesis during cold stress by interacting with ceramide-modifying enzymes. Planta. 2014;240(1):77–89. es_ES
dc.description.references Karim S, Lundh D, Holmström K-O, Mandal A, Pirhonen M. Structural and functional characterization of AtPTR3, a stress-induced peptide transporter of Arabidopsis. J Mol Model. 2005;11(3):226–36. es_ES
dc.description.references Karim S, Holmström K-O, Mandal A, Dahl P, Hohmann S, Brader G, Palva ET, Pirhonen M. AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis. Planta. 2007;225(6):1431–45. es_ES
dc.description.references Dametto A, Sperotto RA, Adamski JM, Blasi ÉAR, Cargnelutti D, de Oliveira LFV, Ricachenevsky FK, Fregonezi JN, Mariath JEA, da Cruz RP, et al. Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of contrasting indica genotypes. Plant Sci. 2015;238:1–12. es_ES
dc.description.references Xu W, Jiao Y, Li R, Zhang N, Xiao D, Ding X, Wang Z. Chinese wild-growing Vitis Amurensis ICE1 and ICE2 encode MYC-type bHLH transcription activators that regulate cold tolerance in Arabidopsis. PLoS One. 2014;9(7):e102303. es_ES
dc.description.references Yang Q-S, Gao J, He W-D, Dou T-X, Ding L-J, Wu J-H, Li C-Y, Peng X-X, Zhang S, Yi G-J. Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genomics. 2015;16(1):446. es_ES
dc.description.references Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010;15(10):573–81. es_ES
dc.description.references Zhao J-L, Pan J-S, Guan Y, Zhang W-W, Bie B-B, Wang Y-L, He H-L, Lian H-L, Cai R. Micro-trichome as a class I homeodomain-leucine zipper gene regulates multicellular trichome development in Cucumis Sativus. J Integr Plant Biol. 2015;57(11):925–35. es_ES
dc.description.references Zhao J-L, Wang Y-L, Yao D-Q, Zhu W-Y, Chen L, He H-L, Pan J-S, Cai R. Transcriptome profiling of trichome-less reveals genes associated with multicellular trichome development in Cucumis Sativus. Mol Gen Genomics. 2015;290(5):2007–18. es_ES
dc.description.references Dietz K-J, Vogel MO, Viehhauser A. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma. 2010;245(1):3–14. es_ES
dc.description.references Feng J-X, Liu D, Pan Y, Gong W, Ma L-G, Luo J-C, Deng XW, Zhu Y-X. An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental Responsivenessof the Arabidopsis AP2/EREBP transcription factor gene family. Plant Mol Biol. 2005;59(6):853–68. es_ES
dc.description.references Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis Thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci. 1997;94(3):1035–40. es_ES
dc.description.references Gilmour SJ, Fowler SG, Thomashow MF. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol. 2004;54(5):767–81. es_ES
dc.description.references Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P. The cold-inducible CBF1 factor–dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on Gibberellin metabolism. Plant Cell. 2008;20(8):2117–29. es_ES
dc.description.references Zhu A, Li W, Ye J, Sun X, Ding Y, Cheng Y, Deng X. Microarray expression profiling of postharvest Ponkan mandarin (Citrus Reticulata) fruit under cold storage reveals regulatory gene candidates and implications on soluble sugars metabolism. J Integr Plant Biol. 2011;53(5):358–74. es_ES
dc.description.references Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu J-K. Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett. 2006;580(28–29):6537–42. es_ES
dc.description.references Rossel JB, Wilson PB, Hussain D, Woo NS, Gordon MJ, Mewett OP, Howell KA, Whelan J, Kazan K, Pogson BJ. Systemic and intracellular responses to Photooxidative stress in Arabidopsis. Plant Cell. 2007;19(12):4091–110. es_ES
dc.description.references Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 2004;136(1):2734–46. es_ES
dc.description.references Nguyen XC, Kim SH, Hussain S, An J, Yoo Y, Han HJ, Yoo JS, Lim CO, Yun D-J, Chung WS. A positive transcription factor in osmotic stress tolerance, ZAT10, is regulated by MAP kinases in Arabidopsis. J Plant Biol. 2016;59(1):55–61. es_ES
dc.description.references Denison FC, Paul A-L, Zupanska AK, Ferl RJ. 14-3-3 proteins in plant physiology. Semin Cell Dev Biol. 2011;22(7):720–7. es_ES
dc.description.references Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. 2010;61:651–79. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem