- -

Chemical Engineering of Photoactivity in Heterometallic Titanium-Organic Frameworks by Metal Doping

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Chemical Engineering of Photoactivity in Heterometallic Titanium-Organic Frameworks by Metal Doping

Mostrar el registro completo del ítem

Castells-Gil, J.; Padial, NM.; Almora-Barrios, N.; Albero-Sancho, J.; Ruiz-Salvador, AR.; Gonzalez-Platas, J.; García Gómez, H.... (2018). Chemical Engineering of Photoactivity in Heterometallic Titanium-Organic Frameworks by Metal Doping. Angewandte Chemie International Edition. 57(28):8453-8457. https://doi.org/10.1002/anie.201802089

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/146499

Ficheros en el ítem

Metadatos del ítem

Título: Chemical Engineering of Photoactivity in Heterometallic Titanium-Organic Frameworks by Metal Doping
Autor: Castells-Gil, Javier Padial, Natalia M. Almora-Barrios, Neyvis Albero-Sancho, Josep Ruiz-Salvador, A. Rabdel Gonzalez-Platas, Javier García Gómez, Hermenegildo Marti-Gastaldo, Carlos
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] We report a new family of titanium-organic frameworks that enlarges the limited number of crystalline, porous materials available for this metal. They are chemically robust and can be prepared as single crystals at ...[+]
Palabras clave: Band-gap engineering , Metal doping , Metal-organic frameworks, Photocatalysis , Titanium
Derechos de uso: Reserva de todos los derechos
Fuente:
Angewandte Chemie International Edition. (issn: 1433-7851 )
DOI: 10.1002/anie.201802089
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/anie.201802089
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/714122/EU/Chemical Engineering of Functional Stable Metal-Organic Frameworks: Porous Crystals and Thin Film Devices/
...[+]
info:eu-repo/grantAgreement/EC/H2020/714122/EU/Chemical Engineering of Functional Stable Metal-Organic Frameworks: Porous Crystals and Thin Film Devices/
info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-4-P/ES/CARACTERIZACION DE NANO-PEROVSKITAS DE OXIDOS Y FLUORUROS DOPADOS CON IONES LUMINISCENTES EN CONDICIONES EXTREMAS; APLICACION EN SISTEMAS FOTONICOS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-83486-P/ES/REDES METAL-ORGANICAS DE INSPIRACION BIOLOGICA: COMPLEJIDAD QUIMICA EN ENTORNOS DE PORO VERSATILES/
info:eu-repo/grantAgreement/MINECO//CTQ2014-59209-P/ES/OLIMEROS DE COORDINACION MAGNETICOS SENSIBLES A ESTIMULOS QUIMICOS/
info:eu-repo/grantAgreement/Junta de Andalucía//P10-FQM-6050/
info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/
[-]
Agradecimientos:
This work was supported by the EU (ERC Stg Chem-fs-MOF 714122) and Spanish MINECO (MDM-2015-0538, MAT2016-75586-C4-4-P & CTQ2017-83486-P). C.M.-G. and J.C.-G. thank the Spanish MINECO for a Ramon y Cajal Fellowship and FPI ...[+]
Tipo: Artículo

References

Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444-1230444. doi:10.1126/science.1230444

Adil, K., Belmabkhout, Y., Pillai, R. S., Cadiau, A., Bhatt, P. M., Assen, A. H., … Eddaoudi, M. (2017). Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chemical Society Reviews, 46(11), 3402-3430. doi:10.1039/c7cs00153c

Howarth, A. J., Liu, Y., Li, P., Li, Z., Wang, T. C., Hupp, J. T., & Farha, O. K. (2016). Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 1(3). doi:10.1038/natrevmats.2015.18 [+]
Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444-1230444. doi:10.1126/science.1230444

Adil, K., Belmabkhout, Y., Pillai, R. S., Cadiau, A., Bhatt, P. M., Assen, A. H., … Eddaoudi, M. (2017). Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chemical Society Reviews, 46(11), 3402-3430. doi:10.1039/c7cs00153c

Howarth, A. J., Liu, Y., Li, P., Li, Z., Wang, T. C., Hupp, J. T., & Farha, O. K. (2016). Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 1(3). doi:10.1038/natrevmats.2015.18

Colombo, V., Galli, S., Choi, H. J., Han, G. D., Maspero, A., Palmisano, G., … Long, J. R. (2011). High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chemical Science, 2(7), 1311. doi:10.1039/c1sc00136a

Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., … Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191. doi:10.1073/pnas.0602439103

Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953

Devic, T., & Serre, C. (2014). High valence 3p and transition metal based MOFs. Chem. Soc. Rev., 43(16), 6097-6115. doi:10.1039/c4cs00081a

Bai, Y., Dou, Y., Xie, L.-H., Rutledge, W., Li, J.-R., & Zhou, H.-C. (2016). Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 45(8), 2327-2367. doi:10.1039/c5cs00837a

Assi, H., Mouchaham, G., Steunou, N., Devic, T., & Serre, C. (2017). Titanium coordination compounds: from discrete metal complexes to metal–organic frameworks. Chemical Society Reviews, 46(11), 3431-3452. doi:10.1039/c7cs00001d

Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., & Férey, G. (2009). A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 131(31), 10857-10859. doi:10.1021/ja903726m

Gao, J., Miao, J., Li, P.-Z., Teng, W. Y., Yang, L., Zhao, Y., … Zhang, Q. (2014). A p-type Ti(iv)-based metal–organic framework with visible-light photo-response. Chem. Commun., 50(29), 3786-3788. doi:10.1039/c3cc49440c

Bueken, B., Vermoortele, F., Vanpoucke, D. E. P., Reinsch, H., Tsou, C.-C., Valvekens, P., … De Vos, D. (2015). A Flexible Photoactive Titanium Metal-Organic Framework Based on a [TiIV3(μ3-O)(O)2(COO)6] Cluster. Angewandte Chemie International Edition, 54(47), 13912-13917. doi:10.1002/anie.201505512

Bueken, B., Vermoortele, F., Vanpoucke, D. E. P., Reinsch, H., Tsou, C.-C., Valvekens, P., … De Vos, D. (2015). A Flexible Photoactive Titanium Metal-Organic Framework Based on a [TiIV3(μ3-O)(O)2(COO)6] Cluster. Angewandte Chemie, 127(47), 14118-14123. doi:10.1002/ange.201505512

Yuan, S., Liu, T.-F., Feng, D., Tian, J., Wang, K., Qin, J., … Zhou, H.-C. (2015). A single crystalline porphyrinic titanium metal–organic framework. Chemical Science, 6(7), 3926-3930. doi:10.1039/c5sc00916b

Yuan, S., Qin, J.-S., Xu, H.-Q., Su, J., Rossi, D., Chen, Y., … Zhou, H.-C. (2017). [Ti8Zr2O12(COO)16] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks. ACS Central Science, 4(1), 105-111. doi:10.1021/acscentsci.7b00497

Dhakshinamoorthy, A., Asiri, A. M., & García, H. (2016). Metal-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581

Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metall-organische Gerüstverbindungen: Photokatalysatoren für Redoxreaktion und die Produktion von Solarbrennstoffen. Angewandte Chemie, 128(18), 5504-5535. doi:10.1002/ange.201505581

Deng, X., Li, Z., & García, H. (2017). Visible Light Induced Organic Transformations Using Metal-Organic-Frameworks (MOFs). Chemistry - A European Journal, 23(47), 11189-11209. doi:10.1002/chem.201701460

Horiuchi, Y., Toyao, T., Saito, M., Mochizuki, K., Iwata, M., Higashimura, H., … Matsuoka, M. (2012). Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal–Organic Framework. The Journal of Physical Chemistry C, 116(39), 20848-20853. doi:10.1021/jp3046005

Hendon, C. H., Tiana, D., Fontecave, M., Sanchez, C., D’arras, L., Sassoye, C., … Walsh, A. (2013). Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization. Journal of the American Chemical Society, 135(30), 10942-10945. doi:10.1021/ja405350u

Chambers, M. B., Wang, X., Ellezam, L., Ersen, O., Fontecave, M., Sanchez, C., … Mellot-Draznieks, C. (2017). Maximizing the Photocatalytic Activity of Metal–Organic Frameworks with Aminated-Functionalized Linkers: Substoichiometric Effects in MIL-125-NH2. Journal of the American Chemical Society, 139(24), 8222-8228. doi:10.1021/jacs.7b02186

Blatov, V. A., Shevchenko, A. P., & Proserpio, D. M. (2014). Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Crystal Growth & Design, 14(7), 3576-3586. doi:10.1021/cg500498k

Delgado-Friedrichs, O., & O’Keeffe, M. (2003). Identification of and symmetry computation for crystal nets. Acta Crystallographica Section A Foundations of Crystallography, 59(4), 351-360. doi:10.1107/s0108767303012017

Dincă, M., Han, W. S., Liu, Y., Dailly, A., Brown, C. M., & Long, J. R. (2007). Observation of Cu2+–H2 Interactions in a Fully Desolvated Sodalite-Type Metal–Organic Framework. Angewandte Chemie International Edition, 46(9), 1419-1422. doi:10.1002/anie.200604362

Dincă, M., Han, W. S., Liu, Y., Dailly, A., Brown, C. M., & Long, J. R. (2007). Observation of Cu2+–H2 Interactions in a Fully Desolvated Sodalite-Type Metal–Organic Framework. Angewandte Chemie, 119(9), 1441-1444. doi:10.1002/ange.200604362

Liu, T.-F., Vermeulen, N. A., Howarth, A. J., Li, P., Sarjeant, A. A., Hupp, J. T., & Farha, O. K. (2016). Adding to the Arsenal of Zirconium-Based Metal-Organic Frameworks: the Topology as a Platform for Solvent-Assisted Metal Incorporation. European Journal of Inorganic Chemistry, 2016(27), 4349-4352. doi:10.1002/ejic.201600627

Wang, B., Lv, X.-L., Feng, D., Xie, L.-H., Zhang, J., Li, M., … Zhou, H.-C. (2016). Highly Stable Zr(IV)-Based Metal–Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. Journal of the American Chemical Society, 138(19), 6204-6216. doi:10.1021/jacs.6b01663

Tan, Y.-X., He, Y.-P., & Zhang, J. (2011). Pore partition effect on gas sorption properties of an anionic metal–organic framework with exposed Cu2+ coordination sites. Chemical Communications, 47(38), 10647. doi:10.1039/c1cc14118j

Zou, L., Feng, D., Liu, T.-F., Chen, Y.-P., Yuan, S., Wang, K., … Zhou, H.-C. (2016). A versatile synthetic route for the preparation of titanium metal–organic frameworks. Chem. Sci., 7(2), 1063-1069. doi:10.1039/c5sc03620h

Santaclara, J. G., Kapteijn, F., Gascon, J., & van der Veen, M. A. (2017). Understanding metal–organic frameworks for photocatalytic solar fuel production. CrystEngComm, 19(29), 4118-4125. doi:10.1039/c7ce00006e

Cremades, E., Echeverría, J., & Alvarez, S. (2010). The Trigonal Prism in Coordination Chemistry. Chemistry - A European Journal, 16(34), 10380-10396. doi:10.1002/chem.200903032

Brozek, C. K., & Dincă, M. (2013). Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-Substituted MOF-5 and Redox Reactivity in Cr- and Fe-MOF-5. Journal of the American Chemical Society, 135(34), 12886-12891. doi:10.1021/ja4064475

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem