Das, M., Mohapatra, S., & Mohapatra, S. S. (2012). New perspectives on central and peripheral immune responses to acute traumatic brain injury. Journal of Neuroinflammation, 9(1). doi:10.1186/1742-2094-9-236
Jennett, B. (1972). Prognosis after Severe Head Injury. Neurosurgery, 19(CN_suppl_1), 200-207. doi:10.1093/neurosurgery/19.cn_suppl_1.200
Kumar, S., Rao, S. L., Chandramouli, B. A., & Pillai, S. (2013). Reduced contribution of executive functions in impaired working memory performance in mild traumatic brain injury patients. Clinical Neurology and Neurosurgery, 115(8), 1326-1332. doi:10.1016/j.clineuro.2012.12.038
[+]
Das, M., Mohapatra, S., & Mohapatra, S. S. (2012). New perspectives on central and peripheral immune responses to acute traumatic brain injury. Journal of Neuroinflammation, 9(1). doi:10.1186/1742-2094-9-236
Jennett, B. (1972). Prognosis after Severe Head Injury. Neurosurgery, 19(CN_suppl_1), 200-207. doi:10.1093/neurosurgery/19.cn_suppl_1.200
Kumar, S., Rao, S. L., Chandramouli, B. A., & Pillai, S. (2013). Reduced contribution of executive functions in impaired working memory performance in mild traumatic brain injury patients. Clinical Neurology and Neurosurgery, 115(8), 1326-1332. doi:10.1016/j.clineuro.2012.12.038
Muehlschlegel, S., Carandang, R., Ouillette, C., Hall, W., Anderson, F., & Goldberg, R. (2013). Frequency and Impact of Intensive Care Unit Complications on Moderate-Severe Traumatic Brain Injury: Early Results of the Outcome Prognostication in Traumatic Brain Injury (OPTIMISM) Study. Neurocritical Care, 18(3), 318-331. doi:10.1007/s12028-013-9817-2
Kaur, C., & Ling, E.-A. (2008). Antioxidants and Neuroprotection in the Adult and Developing Central Nervous System. Current Medicinal Chemistry, 15(29), 3068-3080. doi:10.2174/092986708786848640
Helfaer MA, Kirsch JR, Traystman RJ. Radical scavenegers: penetration into brain following the ischemia and reperfusion. In: Krieglstein J O-S H, editor. Pharmacology of cerebral ischemia. Stuggart: Medpharma Scientific Publishers; 1994. p 297–309.
Xia, W., Han, J., Huang, G., & Ying, W. (2010). Inflammation in ischaemic brain injury: Current advances and future perspectives. Clinical and Experimental Pharmacology and Physiology, 37(2), 253-258. doi:10.1111/j.1440-1681.2009.05279.x
Rocamonde, B., Paradells, S., Barcia, C., Garcia Esparza, A., & Soria, J. M. (2013). Lipoic Acid Treatment after Brain Injury: Study of the Glial Reaction. Clinical and Developmental Immunology, 2013, 1-8. doi:10.1155/2013/521939
Rocamonde, B., Paradells, S., Barcia, J. M., Barcia, C., García Verdugo, J. M., Miranda, M., … Soria, J. M. (2012). Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury. Neuroscience, 224, 102-115. doi:10.1016/j.neuroscience.2012.08.028
Bokara, K. K., Kim, J. Y., Lee, Y. I., Yun, K., Webster, T. J., & Lee, J. E. (2013). Biocompatability of carbon nanotubes with stem cells to treat CNS injuries. Anatomy & Cell Biology, 46(2), 85. doi:10.5115/acb.2013.46.2.85
Walker, P. A., Aroom, K. R., Jimenez, F., Shah, S. K., Harting, M. T., Gill, B. S., & Cox, C. S. (2009). Advances in Progenitor Cell Therapy Using Scaffolding Constructs for Central Nervous System Injury. Stem Cell Reviews and Reports, 5(3), 283-300. doi:10.1007/s12015-009-9081-1
Ito, Y., Hasuda, H., Kamitakahara, M., Ohtsuki, C., Tanihara, M., Kang, I.-K., & Kwon, O. H. (2005). A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. Journal of Bioscience and Bioengineering, 100(1), 43-49. doi:10.1263/jbb.100.43
Saracino, G. A. A., Cigognini, D., Silva, D., Caprini, A., & Gelain, F. (2013). Nanomaterials design and tests for neural tissue engineering. Chem. Soc. Rev., 42(1), 225-262. doi:10.1039/c2cs35065c
BROWN, R., BLUNN, G., & EJIM, O. (1994). Preparation of orientated fibrous mats from fibronectin: composition and stability. Biomaterials, 15(6), 457-464. doi:10.1016/0142-9612(94)90225-9
Ejim, O. S., Blunn, G. W., & Brown, R. A. (1993). Production of artificial-orientated mats and strands from plasma fibronectin: a morphological study. Biomaterials, 14(10), 743-748. doi:10.1016/0142-9612(93)90038-4
Keilhoff, G., Stang, F., Wolf, G., & Fansa, H. (2003). Bio-compatibility of type I/III collagen matrix for peripheral nerve reconstruction. Biomaterials, 24(16), 2779-2787. doi:10.1016/s0142-9612(03)00084-x
Zhang, W., Chen, J., Tao, J., Jiang, Y., Hu, C., Huang, L., … Ouyang, H. W. (2013). The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials, 34(3), 713-723. doi:10.1016/j.biomaterials.2012.10.027
Martínez-Ramos, C., Lainez, S., Sancho, F., García Esparza, M. A., Planells-Cases, R., García Verdugo, J. M., … Soria, J. M. (2008). Differentiation of Postnatal Neural Stem Cells into Glia and Functional Neurons on Laminin-Coated Polymeric Substrates. Tissue Engineering Part A, 14(8), 1365-1375. doi:10.1089/ten.tea.2007.0295
Soria, J. M., Martínez Ramos, C., Salmerón Sánchez, M., Benavent, V., Campillo Fernández, A., Gómez Ribelles, J. L., … Barcia, J. A. (2006). Survival and differentiation of embryonic neural explants on different biomaterials. Journal of Biomedical Materials Research Part A, 79A(3), 495-502. doi:10.1002/jbm.a.30803
Xie, J., Willerth, S. M., Li, X., Macewan, M. R., Rader, A., Sakiyama-Elbert, S. E., & Xia, Y. (2009). The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials, 30(3), 354-362. doi:10.1016/j.biomaterials.2008.09.046
Wong, D. Y., Hollister, S. J., Krebsbach, P. H., & Nosrat, C. (2007). Poly(ɛ-Caprolactone) and Poly (L-Lactic-Co-Glycolic Acid) Degradable Polymer Sponges Attenuate Astrocyte Response and Lesion Growth in Acute Traumatic Brain Injury. Tissue Engineering, 13(10), 2515-2523. doi:10.1089/ten.2006.0440
Martínez‐Ramos, C., Vallés‐Lluch, A., Verdugo, J. M. G., Ribelles, J. L. G., Barcia Albacar, J. A., Orts, A. B., … Pradas, M. M. (2012). Channeled scaffolds implanted in adult rat brain. Journal of Biomedical Materials Research Part A, 100A(12), 3276-3286. doi:10.1002/jbm.a.34273
Rodríguez Hernández, J. C., Serrano Aroca, Á., Gómez Ribelles, J. L., & Pradas, M. M. (2008). Three-dimensional nanocomposite scaffolds with ordered cylindrical orthogonal pores. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84B(2), 541-549. doi:10.1002/jbm.b.30902
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego, CA: Academic Press; 1986.
Harting, M. T., Sloan, L. E., Jimenez, F., Baumgartner, J., & Cox, C. S. (2009). Subacute Neural Stem Cell Therapy for Traumatic Brain Injury. Journal of Surgical Research, 153(2), 188-194. doi:10.1016/j.jss.2008.03.037
Wallenquist, U., Brännvall, K., Clausen, F., Lewén, A., Hillered, L., & Forsberg-Nilsson, K. (2009). Grafted neural progenitors migrate and form neurons after experimental traumatic brain injury. Restorative Neurology and Neuroscience, 27(4), 323-334. doi:10.3233/rnn-2009-0481
Sun, D., Gugliotta, M., Rolfe, A., Reid, W., McQuiston, A. R., Hu, W., & Young, H. (2011). Sustained Survival and Maturation of Adult Neural Stem/Progenitor Cells after Transplantation into the Injured Brain. Journal of Neurotrauma, 28(6), 961-972. doi:10.1089/neu.2010.1697
Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain. Cell, 97(6), 703-716. doi:10.1016/s0092-8674(00)80783-7
Fuentealba, L. C., Obernier, K., & Alvarez-Buylla, A. (2012). Adult Neural Stem Cells Bridge Their Niche. Cell Stem Cell, 10(6), 698-708. doi:10.1016/j.stem.2012.05.012
Rice, A. (2003). Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Experimental Neurology, 183(2), 406-417. doi:10.1016/s0014-4886(03)00241-3
Lee, C., & Agoston, D. V. (2010). Vascular Endothelial Growth Factor Is Involved in Mediating Increased De Novo Hippocampal Neurogenesis in Response to Traumatic Brain Injury. Journal of Neurotrauma, 27(3), 541-553. doi:10.1089/neu.2009.0905
Sun, D., Bullock, M. R., Altememi, N., Zhou, Z., Hagood, S., Rolfe, A., … Colello, R. J. (2010). The Effect of Epidermal Growth Factor in the Injured Brain after Trauma in Rats. Journal of Neurotrauma, 27(5), 923-938. doi:10.1089/neu.2009.1209
Verreck, G., Chun, I., Li, Y., Kataria, R., Zhang, Q., Rosenblatt, J., … Brewster, M. E. (2005). Preparation and physicochemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole. Biomaterials, 26(11), 1307-1315. doi:10.1016/j.biomaterials.2004.04.040
Park, K. I., Teng, Y. D., & Snyder, E. Y. (2002). The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nature Biotechnology, 20(11), 1111-1117. doi:10.1038/nbt751
Teng, Y. D., Lavik, E. B., Qu, X., Park, K. I., Ourednik, J., Zurakowski, D., … Snyder, E. Y. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proceedings of the National Academy of Sciences, 99(5), 3024-3029. doi:10.1073/pnas.052678899
[-]