Mostrar el registro sencillo del ítem
dc.contributor.author | Rocamonde, Brenda | es_ES |
dc.contributor.author | Paradells, Sara | es_ES |
dc.contributor.author | Garcia Esparza, M. Angeles | es_ES |
dc.contributor.author | Sanchez Vives, Mavi | es_ES |
dc.contributor.author | Sauro, Salvatore | es_ES |
dc.contributor.author | Martínez-Ramos, Cristina | es_ES |
dc.contributor.author | Monleón Pradas, Manuel | es_ES |
dc.contributor.author | Soria, Jose Miguel | es_ES |
dc.date.accessioned | 2020-06-24T03:31:44Z | |
dc.date.available | 2020-06-24T03:31:44Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 0269-9052 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146884 | |
dc.description.abstract | [EN] Primary objective: The aim of this study was to investigate the reparative potential of a polymeric scaffold designed for brain tissue repair in combination with lipoic acid. Research design: Histological, cytological and structural analysis of a combined treatment after a brain cryo-injury model in rats. Methods and procedures: Adult Wistar rats were subjected to cryogenic brain injury. A channelled-porous scaffold of ethyl acrylate and hydroxyethylacrylate, p(EA-co-HEA) was grafted into cerebral penumbra alone or combined with intraperitoneal LA administration. Histological and cytological evaluation was performed after 15 and 60 days and structural magnetic resonance (MRI) assessment was performed at 2 and 6 months after the surgery. Main outcomes and results: The scaffold was suitable for the establishment of different cellular types. The results obtained suggest that this strategy promotes blood vessels formation, decreased microglial response and neuron migration, particularly when LA was administrated. Conclusions: These evidences demonstrated that the combination of a channelled polymer scaffold with LA administration may represent a potential treatment for neural tissue repair after brain injury. | es_ES |
dc.description.sponsorship | The authors report no conflicts of interest. JMSL acknowledges funding through Programa de Ayudas a la Investigación Científica Universidad CEU-Cardenal Herrera (PRCEU-UCH 34/12), PRCEU-UCH 38/10 and programa ayudas a grupos consolidados 2014-15). CMR and MMP acknowledge financing through projects MAT2011-28791-C03-02 and ERA-NET NEURON project PRI-PIMNEU-2011-1372. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Brain Injury | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Brain injury | es_ES |
dc.subject | Biopolymers | es_ES |
dc.subject | Lipoic acid | es_ES |
dc.subject | Oxidative stress | es_ES |
dc.subject | Neural repairing | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Combined application of polyacrylate scaffold and lipoic acid treatment promotes neural tissue reparation after brain injury | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3109/02699052.2015.1091505 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Universidad CEU Cardenal Herrera//PRCEU-UCH 34%2F12/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Universidad CEU Cardenal Herrera//PRCEU-UCH 38%2F10/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PRI-PIMNEU-2011-1372/ES/MATERIALES BIFUNCIONALES PARA LA REGENERACION NEURAL DE AREAS AFECTADAS POR ICTUS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2011-28791-C03-02/ES/MATERIALES DE SOPORTE Y LIBERACION CONTROLADA PARA LA REGENERACION DE ESTRUCTURAS NEURALES AFECTADAS POR ICTUS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Rocamonde, B.; Paradells, S.; Garcia Esparza, MA.; Sanchez Vives, M.; Sauro, S.; Martínez-Ramos, C.; Monleón Pradas, M.... (2016). Combined application of polyacrylate scaffold and lipoic acid treatment promotes neural tissue reparation after brain injury. Brain Injury. 30(2):208-216. https://doi.org/10.3109/02699052.2015.1091505 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3109/02699052.2015.1091505 | es_ES |
dc.description.upvformatpinicio | 208 | es_ES |
dc.description.upvformatpfin | 216 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 30 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\334705 | es_ES |
dc.contributor.funder | Universidad CEU Cardenal Herrera | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Das, M., Mohapatra, S., & Mohapatra, S. S. (2012). New perspectives on central and peripheral immune responses to acute traumatic brain injury. Journal of Neuroinflammation, 9(1). doi:10.1186/1742-2094-9-236 | es_ES |
dc.description.references | Jennett, B. (1972). Prognosis after Severe Head Injury. Neurosurgery, 19(CN_suppl_1), 200-207. doi:10.1093/neurosurgery/19.cn_suppl_1.200 | es_ES |
dc.description.references | Kumar, S., Rao, S. L., Chandramouli, B. A., & Pillai, S. (2013). Reduced contribution of executive functions in impaired working memory performance in mild traumatic brain injury patients. Clinical Neurology and Neurosurgery, 115(8), 1326-1332. doi:10.1016/j.clineuro.2012.12.038 | es_ES |
dc.description.references | Muehlschlegel, S., Carandang, R., Ouillette, C., Hall, W., Anderson, F., & Goldberg, R. (2013). Frequency and Impact of Intensive Care Unit Complications on Moderate-Severe Traumatic Brain Injury: Early Results of the Outcome Prognostication in Traumatic Brain Injury (OPTIMISM) Study. Neurocritical Care, 18(3), 318-331. doi:10.1007/s12028-013-9817-2 | es_ES |
dc.description.references | Kaur, C., & Ling, E.-A. (2008). Antioxidants and Neuroprotection in the Adult and Developing Central Nervous System. Current Medicinal Chemistry, 15(29), 3068-3080. doi:10.2174/092986708786848640 | es_ES |
dc.description.references | Helfaer MA, Kirsch JR, Traystman RJ. Radical scavenegers: penetration into brain following the ischemia and reperfusion. In: Krieglstein J O-S H, editor. Pharmacology of cerebral ischemia. Stuggart: Medpharma Scientific Publishers; 1994. p 297–309. | es_ES |
dc.description.references | Xia, W., Han, J., Huang, G., & Ying, W. (2010). Inflammation in ischaemic brain injury: Current advances and future perspectives. Clinical and Experimental Pharmacology and Physiology, 37(2), 253-258. doi:10.1111/j.1440-1681.2009.05279.x | es_ES |
dc.description.references | Rocamonde, B., Paradells, S., Barcia, C., Garcia Esparza, A., & Soria, J. M. (2013). Lipoic Acid Treatment after Brain Injury: Study of the Glial Reaction. Clinical and Developmental Immunology, 2013, 1-8. doi:10.1155/2013/521939 | es_ES |
dc.description.references | Rocamonde, B., Paradells, S., Barcia, J. M., Barcia, C., García Verdugo, J. M., Miranda, M., … Soria, J. M. (2012). Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury. Neuroscience, 224, 102-115. doi:10.1016/j.neuroscience.2012.08.028 | es_ES |
dc.description.references | Bokara, K. K., Kim, J. Y., Lee, Y. I., Yun, K., Webster, T. J., & Lee, J. E. (2013). Biocompatability of carbon nanotubes with stem cells to treat CNS injuries. Anatomy & Cell Biology, 46(2), 85. doi:10.5115/acb.2013.46.2.85 | es_ES |
dc.description.references | Walker, P. A., Aroom, K. R., Jimenez, F., Shah, S. K., Harting, M. T., Gill, B. S., & Cox, C. S. (2009). Advances in Progenitor Cell Therapy Using Scaffolding Constructs for Central Nervous System Injury. Stem Cell Reviews and Reports, 5(3), 283-300. doi:10.1007/s12015-009-9081-1 | es_ES |
dc.description.references | Ito, Y., Hasuda, H., Kamitakahara, M., Ohtsuki, C., Tanihara, M., Kang, I.-K., & Kwon, O. H. (2005). A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. Journal of Bioscience and Bioengineering, 100(1), 43-49. doi:10.1263/jbb.100.43 | es_ES |
dc.description.references | Saracino, G. A. A., Cigognini, D., Silva, D., Caprini, A., & Gelain, F. (2013). Nanomaterials design and tests for neural tissue engineering. Chem. Soc. Rev., 42(1), 225-262. doi:10.1039/c2cs35065c | es_ES |
dc.description.references | BROWN, R., BLUNN, G., & EJIM, O. (1994). Preparation of orientated fibrous mats from fibronectin: composition and stability. Biomaterials, 15(6), 457-464. doi:10.1016/0142-9612(94)90225-9 | es_ES |
dc.description.references | Ejim, O. S., Blunn, G. W., & Brown, R. A. (1993). Production of artificial-orientated mats and strands from plasma fibronectin: a morphological study. Biomaterials, 14(10), 743-748. doi:10.1016/0142-9612(93)90038-4 | es_ES |
dc.description.references | Keilhoff, G., Stang, F., Wolf, G., & Fansa, H. (2003). Bio-compatibility of type I/III collagen matrix for peripheral nerve reconstruction. Biomaterials, 24(16), 2779-2787. doi:10.1016/s0142-9612(03)00084-x | es_ES |
dc.description.references | Zhang, W., Chen, J., Tao, J., Jiang, Y., Hu, C., Huang, L., … Ouyang, H. W. (2013). The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials, 34(3), 713-723. doi:10.1016/j.biomaterials.2012.10.027 | es_ES |
dc.description.references | Martínez-Ramos, C., Lainez, S., Sancho, F., García Esparza, M. A., Planells-Cases, R., García Verdugo, J. M., … Soria, J. M. (2008). Differentiation of Postnatal Neural Stem Cells into Glia and Functional Neurons on Laminin-Coated Polymeric Substrates. Tissue Engineering Part A, 14(8), 1365-1375. doi:10.1089/ten.tea.2007.0295 | es_ES |
dc.description.references | Soria, J. M., Martínez Ramos, C., Salmerón Sánchez, M., Benavent, V., Campillo Fernández, A., Gómez Ribelles, J. L., … Barcia, J. A. (2006). Survival and differentiation of embryonic neural explants on different biomaterials. Journal of Biomedical Materials Research Part A, 79A(3), 495-502. doi:10.1002/jbm.a.30803 | es_ES |
dc.description.references | Xie, J., Willerth, S. M., Li, X., Macewan, M. R., Rader, A., Sakiyama-Elbert, S. E., & Xia, Y. (2009). The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials, 30(3), 354-362. doi:10.1016/j.biomaterials.2008.09.046 | es_ES |
dc.description.references | Wong, D. Y., Hollister, S. J., Krebsbach, P. H., & Nosrat, C. (2007). Poly(ɛ-Caprolactone) and Poly (L-Lactic-Co-Glycolic Acid) Degradable Polymer Sponges Attenuate Astrocyte Response and Lesion Growth in Acute Traumatic Brain Injury. Tissue Engineering, 13(10), 2515-2523. doi:10.1089/ten.2006.0440 | es_ES |
dc.description.references | Martínez‐Ramos, C., Vallés‐Lluch, A., Verdugo, J. M. G., Ribelles, J. L. G., Barcia Albacar, J. A., Orts, A. B., … Pradas, M. M. (2012). Channeled scaffolds implanted in adult rat brain. Journal of Biomedical Materials Research Part A, 100A(12), 3276-3286. doi:10.1002/jbm.a.34273 | es_ES |
dc.description.references | Rodríguez Hernández, J. C., Serrano Aroca, Á., Gómez Ribelles, J. L., & Pradas, M. M. (2008). Three-dimensional nanocomposite scaffolds with ordered cylindrical orthogonal pores. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84B(2), 541-549. doi:10.1002/jbm.b.30902 | es_ES |
dc.description.references | Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego, CA: Academic Press; 1986. | es_ES |
dc.description.references | Harting, M. T., Sloan, L. E., Jimenez, F., Baumgartner, J., & Cox, C. S. (2009). Subacute Neural Stem Cell Therapy for Traumatic Brain Injury. Journal of Surgical Research, 153(2), 188-194. doi:10.1016/j.jss.2008.03.037 | es_ES |
dc.description.references | Wallenquist, U., Brännvall, K., Clausen, F., Lewén, A., Hillered, L., & Forsberg-Nilsson, K. (2009). Grafted neural progenitors migrate and form neurons after experimental traumatic brain injury. Restorative Neurology and Neuroscience, 27(4), 323-334. doi:10.3233/rnn-2009-0481 | es_ES |
dc.description.references | Sun, D., Gugliotta, M., Rolfe, A., Reid, W., McQuiston, A. R., Hu, W., & Young, H. (2011). Sustained Survival and Maturation of Adult Neural Stem/Progenitor Cells after Transplantation into the Injured Brain. Journal of Neurotrauma, 28(6), 961-972. doi:10.1089/neu.2010.1697 | es_ES |
dc.description.references | Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain. Cell, 97(6), 703-716. doi:10.1016/s0092-8674(00)80783-7 | es_ES |
dc.description.references | Fuentealba, L. C., Obernier, K., & Alvarez-Buylla, A. (2012). Adult Neural Stem Cells Bridge Their Niche. Cell Stem Cell, 10(6), 698-708. doi:10.1016/j.stem.2012.05.012 | es_ES |
dc.description.references | Rice, A. (2003). Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Experimental Neurology, 183(2), 406-417. doi:10.1016/s0014-4886(03)00241-3 | es_ES |
dc.description.references | Lee, C., & Agoston, D. V. (2010). Vascular Endothelial Growth Factor Is Involved in Mediating Increased De Novo Hippocampal Neurogenesis in Response to Traumatic Brain Injury. Journal of Neurotrauma, 27(3), 541-553. doi:10.1089/neu.2009.0905 | es_ES |
dc.description.references | Sun, D., Bullock, M. R., Altememi, N., Zhou, Z., Hagood, S., Rolfe, A., … Colello, R. J. (2010). The Effect of Epidermal Growth Factor in the Injured Brain after Trauma in Rats. Journal of Neurotrauma, 27(5), 923-938. doi:10.1089/neu.2009.1209 | es_ES |
dc.description.references | Verreck, G., Chun, I., Li, Y., Kataria, R., Zhang, Q., Rosenblatt, J., … Brewster, M. E. (2005). Preparation and physicochemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole. Biomaterials, 26(11), 1307-1315. doi:10.1016/j.biomaterials.2004.04.040 | es_ES |
dc.description.references | Park, K. I., Teng, Y. D., & Snyder, E. Y. (2002). The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nature Biotechnology, 20(11), 1111-1117. doi:10.1038/nbt751 | es_ES |
dc.description.references | Teng, Y. D., Lavik, E. B., Qu, X., Park, K. I., Ourednik, J., Zurakowski, D., … Snyder, E. Y. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proceedings of the National Academy of Sciences, 99(5), 3024-3029. doi:10.1073/pnas.052678899 | es_ES |