- -

Combined application of polyacrylate scaffold and lipoic acid treatment promotes neural tissue reparation after brain injury

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Combined application of polyacrylate scaffold and lipoic acid treatment promotes neural tissue reparation after brain injury

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rocamonde, Brenda es_ES
dc.contributor.author Paradells, Sara es_ES
dc.contributor.author Garcia Esparza, M. Angeles es_ES
dc.contributor.author Sanchez Vives, Mavi es_ES
dc.contributor.author Sauro, Salvatore es_ES
dc.contributor.author Martínez-Ramos, Cristina es_ES
dc.contributor.author Monleón Pradas, Manuel es_ES
dc.contributor.author Soria, Jose Miguel es_ES
dc.date.accessioned 2020-06-24T03:31:44Z
dc.date.available 2020-06-24T03:31:44Z
dc.date.issued 2016 es_ES
dc.identifier.issn 0269-9052 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146884
dc.description.abstract [EN] Primary objective: The aim of this study was to investigate the reparative potential of a polymeric scaffold designed for brain tissue repair in combination with lipoic acid. Research design: Histological, cytological and structural analysis of a combined treatment after a brain cryo-injury model in rats. Methods and procedures: Adult Wistar rats were subjected to cryogenic brain injury. A channelled-porous scaffold of ethyl acrylate and hydroxyethylacrylate, p(EA-co-HEA) was grafted into cerebral penumbra alone or combined with intraperitoneal LA administration. Histological and cytological evaluation was performed after 15 and 60 days and structural magnetic resonance (MRI) assessment was performed at 2 and 6 months after the surgery. Main outcomes and results: The scaffold was suitable for the establishment of different cellular types. The results obtained suggest that this strategy promotes blood vessels formation, decreased microglial response and neuron migration, particularly when LA was administrated. Conclusions: These evidences demonstrated that the combination of a channelled polymer scaffold with LA administration may represent a potential treatment for neural tissue repair after brain injury. es_ES
dc.description.sponsorship The authors report no conflicts of interest. JMSL acknowledges funding through Programa de Ayudas a la Investigación Científica Universidad CEU-Cardenal Herrera (PRCEU-UCH 34/12), PRCEU-UCH 38/10 and programa ayudas a grupos consolidados 2014-15). CMR and MMP acknowledge financing through projects MAT2011-28791-C03-02 and ERA-NET NEURON project PRI-PIMNEU-2011-1372. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Brain Injury es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Brain injury es_ES
dc.subject Biopolymers es_ES
dc.subject Lipoic acid es_ES
dc.subject Oxidative stress es_ES
dc.subject Neural repairing es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Combined application of polyacrylate scaffold and lipoic acid treatment promotes neural tissue reparation after brain injury es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3109/02699052.2015.1091505 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Universidad CEU Cardenal Herrera//PRCEU-UCH 34%2F12/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Universidad CEU Cardenal Herrera//PRCEU-UCH 38%2F10/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PRI-PIMNEU-2011-1372/ES/MATERIALES BIFUNCIONALES PARA LA REGENERACION NEURAL DE AREAS AFECTADAS POR ICTUS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2011-28791-C03-02/ES/MATERIALES DE SOPORTE Y LIBERACION CONTROLADA PARA LA REGENERACION DE ESTRUCTURAS NEURALES AFECTADAS POR ICTUS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Rocamonde, B.; Paradells, S.; Garcia Esparza, MA.; Sanchez Vives, M.; Sauro, S.; Martínez-Ramos, C.; Monleón Pradas, M.... (2016). Combined application of polyacrylate scaffold and lipoic acid treatment promotes neural tissue reparation after brain injury. Brain Injury. 30(2):208-216. https://doi.org/10.3109/02699052.2015.1091505 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3109/02699052.2015.1091505 es_ES
dc.description.upvformatpinicio 208 es_ES
dc.description.upvformatpfin 216 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\334705 es_ES
dc.contributor.funder Universidad CEU Cardenal Herrera es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Das, M., Mohapatra, S., & Mohapatra, S. S. (2012). New perspectives on central and peripheral immune responses to acute traumatic brain injury. Journal of Neuroinflammation, 9(1). doi:10.1186/1742-2094-9-236 es_ES
dc.description.references Jennett, B. (1972). Prognosis after Severe Head Injury. Neurosurgery, 19(CN_suppl_1), 200-207. doi:10.1093/neurosurgery/19.cn_suppl_1.200 es_ES
dc.description.references Kumar, S., Rao, S. L., Chandramouli, B. A., & Pillai, S. (2013). Reduced contribution of executive functions in impaired working memory performance in mild traumatic brain injury patients. Clinical Neurology and Neurosurgery, 115(8), 1326-1332. doi:10.1016/j.clineuro.2012.12.038 es_ES
dc.description.references Muehlschlegel, S., Carandang, R., Ouillette, C., Hall, W., Anderson, F., & Goldberg, R. (2013). Frequency and Impact of Intensive Care Unit Complications on Moderate-Severe Traumatic Brain Injury: Early Results of the Outcome Prognostication in Traumatic Brain Injury (OPTIMISM) Study. Neurocritical Care, 18(3), 318-331. doi:10.1007/s12028-013-9817-2 es_ES
dc.description.references Kaur, C., & Ling, E.-A. (2008). Antioxidants and Neuroprotection in the Adult and Developing Central Nervous System. Current Medicinal Chemistry, 15(29), 3068-3080. doi:10.2174/092986708786848640 es_ES
dc.description.references Helfaer MA, Kirsch JR, Traystman RJ. Radical scavenegers: penetration into brain following the ischemia and reperfusion. In: Krieglstein J O-S H, editor. Pharmacology of cerebral ischemia. Stuggart: Medpharma Scientific Publishers; 1994. p 297–309. es_ES
dc.description.references Xia, W., Han, J., Huang, G., & Ying, W. (2010). Inflammation in ischaemic brain injury: Current advances and future perspectives. Clinical and Experimental Pharmacology and Physiology, 37(2), 253-258. doi:10.1111/j.1440-1681.2009.05279.x es_ES
dc.description.references Rocamonde, B., Paradells, S., Barcia, C., Garcia Esparza, A., & Soria, J. M. (2013). Lipoic Acid Treatment after Brain Injury: Study of the Glial Reaction. Clinical and Developmental Immunology, 2013, 1-8. doi:10.1155/2013/521939 es_ES
dc.description.references Rocamonde, B., Paradells, S., Barcia, J. M., Barcia, C., García Verdugo, J. M., Miranda, M., … Soria, J. M. (2012). Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury. Neuroscience, 224, 102-115. doi:10.1016/j.neuroscience.2012.08.028 es_ES
dc.description.references Bokara, K. K., Kim, J. Y., Lee, Y. I., Yun, K., Webster, T. J., & Lee, J. E. (2013). Biocompatability of carbon nanotubes with stem cells to treat CNS injuries. Anatomy & Cell Biology, 46(2), 85. doi:10.5115/acb.2013.46.2.85 es_ES
dc.description.references Walker, P. A., Aroom, K. R., Jimenez, F., Shah, S. K., Harting, M. T., Gill, B. S., & Cox, C. S. (2009). Advances in Progenitor Cell Therapy Using Scaffolding Constructs for Central Nervous System Injury. Stem Cell Reviews and Reports, 5(3), 283-300. doi:10.1007/s12015-009-9081-1 es_ES
dc.description.references Ito, Y., Hasuda, H., Kamitakahara, M., Ohtsuki, C., Tanihara, M., Kang, I.-K., & Kwon, O. H. (2005). A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. Journal of Bioscience and Bioengineering, 100(1), 43-49. doi:10.1263/jbb.100.43 es_ES
dc.description.references Saracino, G. A. A., Cigognini, D., Silva, D., Caprini, A., & Gelain, F. (2013). Nanomaterials design and tests for neural tissue engineering. Chem. Soc. Rev., 42(1), 225-262. doi:10.1039/c2cs35065c es_ES
dc.description.references BROWN, R., BLUNN, G., & EJIM, O. (1994). Preparation of orientated fibrous mats from fibronectin: composition and stability. Biomaterials, 15(6), 457-464. doi:10.1016/0142-9612(94)90225-9 es_ES
dc.description.references Ejim, O. S., Blunn, G. W., & Brown, R. A. (1993). Production of artificial-orientated mats and strands from plasma fibronectin: a morphological study. Biomaterials, 14(10), 743-748. doi:10.1016/0142-9612(93)90038-4 es_ES
dc.description.references Keilhoff, G., Stang, F., Wolf, G., & Fansa, H. (2003). Bio-compatibility of type I/III collagen matrix for peripheral nerve reconstruction. Biomaterials, 24(16), 2779-2787. doi:10.1016/s0142-9612(03)00084-x es_ES
dc.description.references Zhang, W., Chen, J., Tao, J., Jiang, Y., Hu, C., Huang, L., … Ouyang, H. W. (2013). The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials, 34(3), 713-723. doi:10.1016/j.biomaterials.2012.10.027 es_ES
dc.description.references Martínez-Ramos, C., Lainez, S., Sancho, F., García Esparza, M. A., Planells-Cases, R., García Verdugo, J. M., … Soria, J. M. (2008). Differentiation of Postnatal Neural Stem Cells into Glia and Functional Neurons on Laminin-Coated Polymeric Substrates. Tissue Engineering Part A, 14(8), 1365-1375. doi:10.1089/ten.tea.2007.0295 es_ES
dc.description.references Soria, J. M., Martínez Ramos, C., Salmerón Sánchez, M., Benavent, V., Campillo Fernández, A., Gómez Ribelles, J. L., … Barcia, J. A. (2006). Survival and differentiation of embryonic neural explants on different biomaterials. Journal of Biomedical Materials Research Part A, 79A(3), 495-502. doi:10.1002/jbm.a.30803 es_ES
dc.description.references Xie, J., Willerth, S. M., Li, X., Macewan, M. R., Rader, A., Sakiyama-Elbert, S. E., & Xia, Y. (2009). The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials, 30(3), 354-362. doi:10.1016/j.biomaterials.2008.09.046 es_ES
dc.description.references Wong, D. Y., Hollister, S. J., Krebsbach, P. H., & Nosrat, C. (2007). Poly(ɛ-Caprolactone) and Poly (L-Lactic-Co-Glycolic Acid) Degradable Polymer Sponges Attenuate Astrocyte Response and Lesion Growth in Acute Traumatic Brain Injury. Tissue Engineering, 13(10), 2515-2523. doi:10.1089/ten.2006.0440 es_ES
dc.description.references Martínez‐Ramos, C., Vallés‐Lluch, A., Verdugo, J. M. G., Ribelles, J. L. G., Barcia Albacar, J. A., Orts, A. B., … Pradas, M. M. (2012). Channeled scaffolds implanted in adult rat brain. Journal of Biomedical Materials Research Part A, 100A(12), 3276-3286. doi:10.1002/jbm.a.34273 es_ES
dc.description.references Rodríguez Hernández, J. C., Serrano Aroca, Á., Gómez Ribelles, J. L., & Pradas, M. M. (2008). Three-dimensional nanocomposite scaffolds with ordered cylindrical orthogonal pores. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84B(2), 541-549. doi:10.1002/jbm.b.30902 es_ES
dc.description.references Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego, CA: Academic Press; 1986. es_ES
dc.description.references Harting, M. T., Sloan, L. E., Jimenez, F., Baumgartner, J., & Cox, C. S. (2009). Subacute Neural Stem Cell Therapy for Traumatic Brain Injury. Journal of Surgical Research, 153(2), 188-194. doi:10.1016/j.jss.2008.03.037 es_ES
dc.description.references Wallenquist, U., Brännvall, K., Clausen, F., Lewén, A., Hillered, L., & Forsberg-Nilsson, K. (2009). Grafted neural progenitors migrate and form neurons after experimental traumatic brain injury. Restorative Neurology and Neuroscience, 27(4), 323-334. doi:10.3233/rnn-2009-0481 es_ES
dc.description.references Sun, D., Gugliotta, M., Rolfe, A., Reid, W., McQuiston, A. R., Hu, W., & Young, H. (2011). Sustained Survival and Maturation of Adult Neural Stem/Progenitor Cells after Transplantation into the Injured Brain. Journal of Neurotrauma, 28(6), 961-972. doi:10.1089/neu.2010.1697 es_ES
dc.description.references Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain. Cell, 97(6), 703-716. doi:10.1016/s0092-8674(00)80783-7 es_ES
dc.description.references Fuentealba, L. C., Obernier, K., & Alvarez-Buylla, A. (2012). Adult Neural Stem Cells Bridge Their Niche. Cell Stem Cell, 10(6), 698-708. doi:10.1016/j.stem.2012.05.012 es_ES
dc.description.references Rice, A. (2003). Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Experimental Neurology, 183(2), 406-417. doi:10.1016/s0014-4886(03)00241-3 es_ES
dc.description.references Lee, C., & Agoston, D. V. (2010). Vascular Endothelial Growth Factor Is Involved in Mediating Increased De Novo Hippocampal Neurogenesis in Response to Traumatic Brain Injury. Journal of Neurotrauma, 27(3), 541-553. doi:10.1089/neu.2009.0905 es_ES
dc.description.references Sun, D., Bullock, M. R., Altememi, N., Zhou, Z., Hagood, S., Rolfe, A., … Colello, R. J. (2010). The Effect of Epidermal Growth Factor in the Injured Brain after Trauma in Rats. Journal of Neurotrauma, 27(5), 923-938. doi:10.1089/neu.2009.1209 es_ES
dc.description.references Verreck, G., Chun, I., Li, Y., Kataria, R., Zhang, Q., Rosenblatt, J., … Brewster, M. E. (2005). Preparation and physicochemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole. Biomaterials, 26(11), 1307-1315. doi:10.1016/j.biomaterials.2004.04.040 es_ES
dc.description.references Park, K. I., Teng, Y. D., & Snyder, E. Y. (2002). The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nature Biotechnology, 20(11), 1111-1117. doi:10.1038/nbt751 es_ES
dc.description.references Teng, Y. D., Lavik, E. B., Qu, X., Park, K. I., Ourednik, J., Zurakowski, D., … Snyder, E. Y. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proceedings of the National Academy of Sciences, 99(5), 3024-3029. doi:10.1073/pnas.052678899 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem