- -

Evaluación de la estabilidad de taludes rocosos a partir de nubes de puntos 3D obtenidas con un vehículo aéreo no tripulado

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluación de la estabilidad de taludes rocosos a partir de nubes de puntos 3D obtenidas con un vehículo aéreo no tripulado

Mostrar el registro completo del ítem

Tomás, R.; Riquelme, A.; Cano, M.; Pastor, JL.; Pagán, JI.; Asensio, JL.; Ruffo, M. (2020). Evaluación de la estabilidad de taludes rocosos a partir de nubes de puntos 3D obtenidas con un vehículo aéreo no tripulado. Revista de Teledetección. 0(55):1-15. https://doi.org/10.4995/raet.2020.13168

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147155

Ficheros en el ítem

Metadatos del ítem

Título: Evaluación de la estabilidad de taludes rocosos a partir de nubes de puntos 3D obtenidas con un vehículo aéreo no tripulado
Otro titulo: Evaluation of the stability of rocky slopes using 3D point clouds obtained from an unmanned aerial vehicle
Autor: Tomás, R. Riquelme, A. Cano, M. Pastor, J. L. Pagán, J. I. Asensio, J. L. Ruffo, M.
Fecha difusión:
Resumen:
[ES] En este trabajo se describe una metodología propuesta para la identificación semiautomática de discontinuidades y el posterior análisis cinemático y de estabilidad a través de su aplicación a una trinchera excavada ...[+]


[EN] In this work, a methodology proposed for the semiautomatic identification of discontinuities and the later kinematic and stability analyses is described through its application to a rocky railway line cutting. Image ...[+]
Palabras clave: UAV , 3D point cloud , Discontinuity , Rocky slope , Slope stability , Nube de puntos 3D , Discontinuidad , Talud rocoso , Estabilidad del talud
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista de Teledetección. (issn: 1133-0953 ) (eissn: 1988-8740 )
DOI: 10.4995/raet.2020.13168
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/raet.2020.13168
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/777630/EU/Multi-scale Observation and Monitoring of railway Infrastructure Threats/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-85244-C2-1-P/ES/TELEDETECCION MULTI-SENSOR Y MULTI-ESCALA: SENSORES Y APLICACIONES/
info:eu-repo/grantAgreement/UA//GRE18-05/
Agradecimientos:
Este trabajo se ha realizado en el marco del proyecto MOMIT, recibiendo financiación de Shift2Rail Joint Undertaking perteneciente al programa de investigación e innovación H2020 de la Unión ...[+]
Tipo: Artículo

References

Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N.J., Lim, M., Lato, M.J. 2014. Terrestrial laser scanning of rock slope instabilities. Earth Surface Processes and Landforms, 39, 80-97. https://doi.org/10.1002/esp.3493

Agisoft LLC. 2020. Agisoft Metashape. St. Petersburg, Russia, https://www.agisoft.com/.

Ansari, M.K., Ahmed, M., Rajesh Singh, T.N., Ghalayani, I. 2015. Rainfall, A Major Cause for Rockfall Hazard along the Roadways, Highways and Railways on Hilly Terrains in India. Springer International Publishing, Cham, 457-460. https://doi.org/10.1007/978-3-319-09300-0_87 [+]
Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N.J., Lim, M., Lato, M.J. 2014. Terrestrial laser scanning of rock slope instabilities. Earth Surface Processes and Landforms, 39, 80-97. https://doi.org/10.1002/esp.3493

Agisoft LLC. 2020. Agisoft Metashape. St. Petersburg, Russia, https://www.agisoft.com/.

Ansari, M.K., Ahmed, M., Rajesh Singh, T.N., Ghalayani, I. 2015. Rainfall, A Major Cause for Rockfall Hazard along the Roadways, Highways and Railways on Hilly Terrains in India. Springer International Publishing, Cham, 457-460. https://doi.org/10.1007/978-3-319-09300-0_87

Botev, Z.I., Grotowski, J.F., Kroese, D.P. 2010. Kernel density estimation via diffusion. Ann. Statist., 38, 2916-2957. https://doi.org/10.1214/10-AOS799

brgm. 2020. Carte géologique 1/50 000 vecteur harmonisée (BRGM). World Wide Web Address: http://infoterre.brgm.fr/viewer/MainTileForward.do

Ester, M., Kriegel, H.-P., Sander, J., Xu, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise KDD, 96, 226-231.

Fonstad, M.A., Dietrich, J.T., Courville, B.C., Jensen, J.L., Carbonneau, P.E. 2013. Topographic structure from motion: a new development in photogrammetric measurement. Earth Surface Processes and Landforms, 38, 421-430. https://doi.org/10.1002/esp.3366

Gigli, G., Casagli, N. 2011. Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. International Journal of Rock Mechanics and Mining Sciences, 48, 187-198, https://doi.org/10.1016/j.ijrmms.2010.11.009

Girardeau-Montant, D. 2016. CloudCompare v2.6.2 64 bit. https://www.danielgm.net/cc/

González de Vallejo, L., Ferrer, M. 2011. Geological Engineering 1ed. https://doi.org/10.1201/b11745

Goodman, R.E., Shi, G. 1985. Block Theory and Its Applications to Rock Engineering. Prentice-Hall, Englewood Cliffs, N.J.

Hungr, O., Evans, S.G., Hazzard, J. 1999. Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Canadian Geotechnical Journal, 36, 224-238. https://doi.org/10.1139/t98-106

James, M.R., Robson, S. 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research: Earth Surface, 117, n/a-n/a. https://doi.org/10.1029/2011JF002289

Jordá-Bordehore, L., Riquelme, A., Cano, M., Tomás, R. 2017. Comparing manual and remote sensing field discontinuity collection used in kinematic stability assessment of failed rock slopes. International Journal of Rock Mechanics and Mining Sciences, 97, 24-32. https://doi.org/10.1016/j.ijrmms.2017.06.004

Lato, M.J., Vöge, M. 2012. Automated mapping of rock discontinuities in 3D lidar and photogrammetry models. International Journal of Rock Mechanics and Mining Sciences, 54, 150-158. https://doi.org/10.1016/j.ijrmms.2012.06.003

Micheletti, N., Chandler, J.H., Lane, S.N. 2015. Structure from motion (SFM) photogrammetry. In: Clarke, L.E. & Nield, J.M. (eds.) Geomorphological Techniques. British Society for Geomorphology, London.

Miller, S.M. 1988. Modeling Shear Strength at Low Normal Stresses for Enhanced Rock Slope Engineer-ing. In: Youd, T.L., Case, W.F., Keane, E.G. & Rausher, L.H. (eds.) 39th Highway Geology Symposium. Brigham Young University Press, North Caroline, USA, 346-356.

Riquelme, A., Araújo, N., Cano, M., Pastor, J.L., Tomás, R., Miranda, T. 2020a. Identification of Persistent Discontinuities on a Granitic Rock Mass Through 3D Datasets and Traditional Fieldwork: A Comparative Analysis. In: Correia, A.G., Tinoco, J., Cortez, P. & Lamas, L. (eds.) Information Technology in Geo-Engineering. Springer International Publishing, Cham, 868-878. https://doi.org/10.1007/978-3-030-32029-4_73

Riquelme, A., Cano, M., Tomás, R., Abellán, A. 2017. Identification of Rock Slope Discontinuity Sets from Laser Scanner and Photogrammetric Point Clouds: A Comparative Analysis. Procedia Engineering, 191, 838-845. https://doi.org/10.1016/j.proeng.2017.05.251

Riquelme, A., Tomás, R., Cano, M., Pastor, J.L., Abellán, A. 2018. Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds. Rock Mechanics and Rock Engineering, 51, 30053028, https://doi.org/10.1007/s00603-018-1519-9

Riquelme, A.J. 2015. Uso de nubes de puntos 3D para identificación y caracterización de familias de discontinuidades planas en afloramientos rocosos y evaluación de la calidad geomecánica, Universidad de Alicante.

Riquelme, A.J., Abellán, A., Tomás, R. 2015. Discontinuity spacing analysis in rock masses using 3D point clouds. Engineering Geology, 195, 185-195. https://doi.org/10.1016/j.enggeo.2015.06.009

Riquelme, A.J., Abellán, A., Tomás, R., Jaboyedoff, M. 2014. A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Computers & Geosciences, 68, 38-52. https://doi.org/10.1016/j.cageo.2014.03.014

Riquelme, A.J., Abellán, A., Tomás, R, Jaboyedoff, M. 2020b. Discontinuity Set Extractor World Wide Recuperado de https://personal.ua.es/en/ariquelme/ discontinuity-set-extractor-software.html

Riquelme, A.J., Tomás, R., Abellán, A. 2016. Characterization of rock slopes through slope mass rating using 3D point clouds. International Journal of Rock Mechanics and Mining Sciences, 84, 165-176. https://doi.org/10.1016/j.ijrmms.2015.12.008

Rocscience Inc. 2020a. RocPlane. Toronto, Canada. https://www.rocscience.com/software/rocplane

Rocscience Inc. 2020b. SWedge. Toronto, Canada. https://www.rocscience.com/software/swedge

Royán, M., Abellán, A., Jaboyedoff, M., Vilaplana, J. & Calvet, J. 2014. Spatio-temporal analysis of rockfall pre-failure deformation using Terrestrial LiDAR. Landslides, 11, 697-709. https://doi.org/10.1007/s10346-013-0442-0

Slob, S. 2010. Automated rock mass characterization using 3D terrestrial laser scanner, Technical University of Delf.

Sturzenegger, M., Stead, D. 2009a. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology, 106, 163-182. https://doi.org/10.1016/j.enggeo.2009.03.004

Sturzenegger, M., Stead, D. 2009b. Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Nat. Hazards Earth Syst. Sci., 9, 267-287. https://doi.org/10.5194/nhess-9-267-2009

Sturzenegger, M., Stead, D., Elmo, D. 2011. Terrestrial remote sensing-based estimation of mean trace length, trace intensity and block size/shape. Engineering Geology, 119, 96-111, https://doi.org/10.1016/j.enggeo.2011.02.005

Tomás, R., Pagán, J.I., Riquelme, A., Cano, M., Pastor, J.L. 2019. Kinematic Analysis Tool, KAT. Disponible en http://hdl.handle.net/10045/90669

Tomás, R., Riquelme, A., Cano, M.A., Jordá, L. 2016. Structure from Motion (SfM): una técnica fotogramétrica de bajo coste para la caracterización y monitoreo de macizos rocosos. 10º Simposio Nacional Ingeniería Geotécnica, La Coruña.

Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M. 2012. 'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021

Zhou, X., Chen, J., Chen, Y., Song, S., Shi, M., Zhan, J. 2017. Bayesian-based probabilistic kinematic analysis of discontinuity-controlled rock slope instabilities. Bulletin of Engineering Geology and the Environment, 76, 1249-1262. https://doi.org/10.1007/s10064-016-0972-5

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem