Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N.J., Lim, M., Lato, M.J. 2014. Terrestrial laser scanning of rock slope instabilities. Earth Surface Processes and Landforms, 39, 80-97. https://doi.org/10.1002/esp.3493
Agisoft LLC. 2020. Agisoft Metashape. St. Petersburg, Russia, https://www.agisoft.com/.
Ansari, M.K., Ahmed, M., Rajesh Singh, T.N., Ghalayani, I. 2015. Rainfall, A Major Cause for Rockfall Hazard along the Roadways, Highways and Railways on Hilly Terrains in India. Springer International Publishing, Cham, 457-460. https://doi.org/10.1007/978-3-319-09300-0_87
[+]
Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N.J., Lim, M., Lato, M.J. 2014. Terrestrial laser scanning of rock slope instabilities. Earth Surface Processes and Landforms, 39, 80-97. https://doi.org/10.1002/esp.3493
Agisoft LLC. 2020. Agisoft Metashape. St. Petersburg, Russia, https://www.agisoft.com/.
Ansari, M.K., Ahmed, M., Rajesh Singh, T.N., Ghalayani, I. 2015. Rainfall, A Major Cause for Rockfall Hazard along the Roadways, Highways and Railways on Hilly Terrains in India. Springer International Publishing, Cham, 457-460. https://doi.org/10.1007/978-3-319-09300-0_87
Botev, Z.I., Grotowski, J.F., Kroese, D.P. 2010. Kernel density estimation via diffusion. Ann. Statist., 38, 2916-2957. https://doi.org/10.1214/10-AOS799
brgm. 2020. Carte géologique 1/50 000 vecteur harmonisée (BRGM). World Wide Web Address: http://infoterre.brgm.fr/viewer/MainTileForward.do
Ester, M., Kriegel, H.-P., Sander, J., Xu, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise KDD, 96, 226-231.
Fonstad, M.A., Dietrich, J.T., Courville, B.C., Jensen, J.L., Carbonneau, P.E. 2013. Topographic structure from motion: a new development in photogrammetric measurement. Earth Surface Processes and Landforms, 38, 421-430. https://doi.org/10.1002/esp.3366
Gigli, G., Casagli, N. 2011. Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. International Journal of Rock Mechanics and Mining Sciences, 48, 187-198, https://doi.org/10.1016/j.ijrmms.2010.11.009
Girardeau-Montant, D. 2016. CloudCompare v2.6.2 64 bit. https://www.danielgm.net/cc/
González de Vallejo, L., Ferrer, M. 2011. Geological Engineering 1ed. https://doi.org/10.1201/b11745
Goodman, R.E., Shi, G. 1985. Block Theory and Its Applications to Rock Engineering. Prentice-Hall, Englewood Cliffs, N.J.
Hungr, O., Evans, S.G., Hazzard, J. 1999. Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Canadian Geotechnical Journal, 36, 224-238. https://doi.org/10.1139/t98-106
James, M.R., Robson, S. 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research: Earth Surface, 117, n/a-n/a. https://doi.org/10.1029/2011JF002289
Jordá-Bordehore, L., Riquelme, A., Cano, M., Tomás, R. 2017. Comparing manual and remote sensing field discontinuity collection used in kinematic stability assessment of failed rock slopes. International Journal of Rock Mechanics and Mining Sciences, 97, 24-32. https://doi.org/10.1016/j.ijrmms.2017.06.004
Lato, M.J., Vöge, M. 2012. Automated mapping of rock discontinuities in 3D lidar and photogrammetry models. International Journal of Rock Mechanics and Mining Sciences, 54, 150-158. https://doi.org/10.1016/j.ijrmms.2012.06.003
Micheletti, N., Chandler, J.H., Lane, S.N. 2015. Structure from motion (SFM) photogrammetry. In: Clarke, L.E. & Nield, J.M. (eds.) Geomorphological Techniques. British Society for Geomorphology, London.
Miller, S.M. 1988. Modeling Shear Strength at Low Normal Stresses for Enhanced Rock Slope Engineer-ing. In: Youd, T.L., Case, W.F., Keane, E.G. & Rausher, L.H. (eds.) 39th Highway Geology Symposium. Brigham Young University Press, North Caroline, USA, 346-356.
Riquelme, A., Araújo, N., Cano, M., Pastor, J.L., Tomás, R., Miranda, T. 2020a. Identification of Persistent Discontinuities on a Granitic Rock Mass Through 3D Datasets and Traditional Fieldwork: A Comparative Analysis. In: Correia, A.G., Tinoco, J., Cortez, P. & Lamas, L. (eds.) Information Technology in Geo-Engineering. Springer International Publishing, Cham, 868-878. https://doi.org/10.1007/978-3-030-32029-4_73
Riquelme, A., Cano, M., Tomás, R., Abellán, A. 2017. Identification of Rock Slope Discontinuity Sets from Laser Scanner and Photogrammetric Point Clouds: A Comparative Analysis. Procedia Engineering, 191, 838-845. https://doi.org/10.1016/j.proeng.2017.05.251
Riquelme, A., Tomás, R., Cano, M., Pastor, J.L., Abellán, A. 2018. Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds. Rock Mechanics and Rock Engineering, 51, 30053028, https://doi.org/10.1007/s00603-018-1519-9
Riquelme, A.J. 2015. Uso de nubes de puntos 3D para identificación y caracterización de familias de discontinuidades planas en afloramientos rocosos y evaluación de la calidad geomecánica, Universidad de Alicante.
Riquelme, A.J., Abellán, A., Tomás, R. 2015. Discontinuity spacing analysis in rock masses using 3D point clouds. Engineering Geology, 195, 185-195. https://doi.org/10.1016/j.enggeo.2015.06.009
Riquelme, A.J., Abellán, A., Tomás, R., Jaboyedoff, M. 2014. A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Computers & Geosciences, 68, 38-52. https://doi.org/10.1016/j.cageo.2014.03.014
Riquelme, A.J., Abellán, A., Tomás, R, Jaboyedoff, M. 2020b. Discontinuity Set Extractor World Wide Recuperado de https://personal.ua.es/en/ariquelme/ discontinuity-set-extractor-software.html
Riquelme, A.J., Tomás, R., Abellán, A. 2016. Characterization of rock slopes through slope mass rating using 3D point clouds. International Journal of Rock Mechanics and Mining Sciences, 84, 165-176. https://doi.org/10.1016/j.ijrmms.2015.12.008
Rocscience Inc. 2020a. RocPlane. Toronto, Canada. https://www.rocscience.com/software/rocplane
Rocscience Inc. 2020b. SWedge. Toronto, Canada. https://www.rocscience.com/software/swedge
Royán, M., Abellán, A., Jaboyedoff, M., Vilaplana, J. & Calvet, J. 2014. Spatio-temporal analysis of rockfall pre-failure deformation using Terrestrial LiDAR. Landslides, 11, 697-709. https://doi.org/10.1007/s10346-013-0442-0
Slob, S. 2010. Automated rock mass characterization using 3D terrestrial laser scanner, Technical University of Delf.
Sturzenegger, M., Stead, D. 2009a. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology, 106, 163-182. https://doi.org/10.1016/j.enggeo.2009.03.004
Sturzenegger, M., Stead, D. 2009b. Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Nat. Hazards Earth Syst. Sci., 9, 267-287. https://doi.org/10.5194/nhess-9-267-2009
Sturzenegger, M., Stead, D., Elmo, D. 2011. Terrestrial remote sensing-based estimation of mean trace length, trace intensity and block size/shape. Engineering Geology, 119, 96-111, https://doi.org/10.1016/j.enggeo.2011.02.005
Tomás, R., Pagán, J.I., Riquelme, A., Cano, M., Pastor, J.L. 2019. Kinematic Analysis Tool, KAT. Disponible en http://hdl.handle.net/10045/90669
Tomás, R., Riquelme, A., Cano, M.A., Jordá, L. 2016. Structure from Motion (SfM): una técnica fotogramétrica de bajo coste para la caracterización y monitoreo de macizos rocosos. 10º Simposio Nacional Ingeniería Geotécnica, La Coruña.
Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M. 2012. 'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021
Zhou, X., Chen, J., Chen, Y., Song, S., Shi, M., Zhan, J. 2017. Bayesian-based probabilistic kinematic analysis of discontinuity-controlled rock slope instabilities. Bulletin of Engineering Geology and the Environment, 76, 1249-1262. https://doi.org/10.1007/s10064-016-0972-5
[-]