Mostrar el registro sencillo del ítem
dc.contributor.author | Tomás, R. | es_ES |
dc.contributor.author | Riquelme, A. | es_ES |
dc.contributor.author | Cano, M. | es_ES |
dc.contributor.author | Pastor, J. L. | es_ES |
dc.contributor.author | Pagán, J. I. | es_ES |
dc.contributor.author | Asensio, J. L. | es_ES |
dc.contributor.author | Ruffo, M. | es_ES |
dc.date.accessioned | 2020-06-30T06:54:59Z | |
dc.date.available | 2020-06-30T06:54:59Z | |
dc.date.issued | 2020-06-23 | |
dc.identifier.issn | 1133-0953 | |
dc.identifier.uri | http://hdl.handle.net/10251/147155 | |
dc.description.abstract | [ES] En este trabajo se describe una metodología propuesta para la identificación semiautomática de discontinuidades y el posterior análisis cinemático y de estabilidad a través de su aplicación a una trinchera excavada en roca de una línea de ferrocarril. La adquisición de imágenes se ha llevado a cabo mediante un vehículo aéreo no tripulado de seis rotores para su posterior restitución fotogramétrica a través de la técnica digital Structure from Motion (SfM) mediante el programa Agisoft Metashape que proporciona una nube de puntos 3D. A partir de esta nube de puntos, se han identificado cuatro familias de discontinuidades (J1, J2, J3 y J4) que afectan al talud haciendo uso del programa de código abierto Discontinuity Set Extractor (DSE). Finalmente, se han llevado a cabo análisis cinemáticos y de estabilidad de las posibles roturas de bloques a favor de las discontinuidades identificadas en el talud. Los resultados muestran tres potenciales roturas por cuña y una plana que han sido validadas cualitativamente mediante el análisis de la geometría de las nubes de puntos. | es_ES |
dc.description.abstract | [EN] In this work, a methodology proposed for the semiautomatic identification of discontinuities and the later kinematic and stability analyses is described through its application to a rocky railway line cutting. Image acquisition has been performed using a six-rotors unmanned aerial vehicle for their subsequent photogrammetric restitution by means of the digital technique Structure from Motion (SfM) by means of the software Agisoft Metashape that provides a 3D point cloud. From this 3D point cloud, four discontinuity sets (J1, J2, J3 and J4) affecting the cutting have been identified using the open source software Discontinuity Set Extractor (DSE). Finally, kinematic and stability analyses of the potential block failures controlled by the discontinuities identified in the cutting. The results show three potential wedge and planar failures that have been qualitatively validated trough the geometric analysis of the 3D point cloud. | es_ES |
dc.description.sponsorship | Este trabajo se ha realizado en el marco del proyecto MOMIT, recibiendo financiación de Shift2Rail Joint Undertaking perteneciente al programa de investigación e innovación H2020 de la Unión Europea a través de la subvención No 777630, del proyecto de la Universidad de Alicante GRE18-05 y del proyecto TEC2017-85244-C2-1-P del Ministerio de Economía y Competitividad (MINECO) y EU FEDER. Los autores quieren dar las gracias a José Miguel García Torres (Geotor S.L.) por la fotografía del UAV incluida en la Figura 1. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista de Teledetección | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | UAV | es_ES |
dc.subject | 3D point cloud | es_ES |
dc.subject | Discontinuity | es_ES |
dc.subject | Rocky slope | es_ES |
dc.subject | Slope stability | es_ES |
dc.subject | Nube de puntos 3D | es_ES |
dc.subject | Discontinuidad | es_ES |
dc.subject | Talud rocoso | es_ES |
dc.subject | Estabilidad del talud | es_ES |
dc.title | Evaluación de la estabilidad de taludes rocosos a partir de nubes de puntos 3D obtenidas con un vehículo aéreo no tripulado | es_ES |
dc.title.alternative | Evaluation of the stability of rocky slopes using 3D point clouds obtained from an unmanned aerial vehicle | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/raet.2020.13168 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/777630/EU/Multi-scale Observation and Monitoring of railway Infrastructure Threats/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-85244-C2-1-P/ES/TELEDETECCION MULTI-SENSOR Y MULTI-ESCALA: SENSORES Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UA//GRE18-05/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Tomás, R.; Riquelme, A.; Cano, M.; Pastor, JL.; Pagán, JI.; Asensio, JL.; Ruffo, M. (2020). Evaluación de la estabilidad de taludes rocosos a partir de nubes de puntos 3D obtenidas con un vehículo aéreo no tripulado. Revista de Teledetección. 0(55):1-15. https://doi.org/10.4995/raet.2020.13168 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/raet.2020.13168 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 0 | es_ES |
dc.description.issue | 55 | es_ES |
dc.identifier.eissn | 1988-8740 | |
dc.relation.pasarela | OJS\13168 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Universidad de Alicante | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N.J., Lim, M., Lato, M.J. 2014. Terrestrial laser scanning of rock slope instabilities. Earth Surface Processes and Landforms, 39, 80-97. https://doi.org/10.1002/esp.3493 | es_ES |
dc.description.references | Agisoft LLC. 2020. Agisoft Metashape. St. Petersburg, Russia, https://www.agisoft.com/. | es_ES |
dc.description.references | Ansari, M.K., Ahmed, M., Rajesh Singh, T.N., Ghalayani, I. 2015. Rainfall, A Major Cause for Rockfall Hazard along the Roadways, Highways and Railways on Hilly Terrains in India. Springer International Publishing, Cham, 457-460. https://doi.org/10.1007/978-3-319-09300-0_87 | es_ES |
dc.description.references | Botev, Z.I., Grotowski, J.F., Kroese, D.P. 2010. Kernel density estimation via diffusion. Ann. Statist., 38, 2916-2957. https://doi.org/10.1214/10-AOS799 | es_ES |
dc.description.references | brgm. 2020. Carte géologique 1/50 000 vecteur harmonisée (BRGM). World Wide Web Address: http://infoterre.brgm.fr/viewer/MainTileForward.do | es_ES |
dc.description.references | Ester, M., Kriegel, H.-P., Sander, J., Xu, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise KDD, 96, 226-231. | es_ES |
dc.description.references | Fonstad, M.A., Dietrich, J.T., Courville, B.C., Jensen, J.L., Carbonneau, P.E. 2013. Topographic structure from motion: a new development in photogrammetric measurement. Earth Surface Processes and Landforms, 38, 421-430. https://doi.org/10.1002/esp.3366 | es_ES |
dc.description.references | Gigli, G., Casagli, N. 2011. Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. International Journal of Rock Mechanics and Mining Sciences, 48, 187-198, https://doi.org/10.1016/j.ijrmms.2010.11.009 | es_ES |
dc.description.references | Girardeau-Montant, D. 2016. CloudCompare v2.6.2 64 bit. https://www.danielgm.net/cc/ | es_ES |
dc.description.references | González de Vallejo, L., Ferrer, M. 2011. Geological Engineering 1ed. https://doi.org/10.1201/b11745 | es_ES |
dc.description.references | Goodman, R.E., Shi, G. 1985. Block Theory and Its Applications to Rock Engineering. Prentice-Hall, Englewood Cliffs, N.J. | es_ES |
dc.description.references | Hungr, O., Evans, S.G., Hazzard, J. 1999. Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Canadian Geotechnical Journal, 36, 224-238. https://doi.org/10.1139/t98-106 | es_ES |
dc.description.references | James, M.R., Robson, S. 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research: Earth Surface, 117, n/a-n/a. https://doi.org/10.1029/2011JF002289 | es_ES |
dc.description.references | Jordá-Bordehore, L., Riquelme, A., Cano, M., Tomás, R. 2017. Comparing manual and remote sensing field discontinuity collection used in kinematic stability assessment of failed rock slopes. International Journal of Rock Mechanics and Mining Sciences, 97, 24-32. https://doi.org/10.1016/j.ijrmms.2017.06.004 | es_ES |
dc.description.references | Lato, M.J., Vöge, M. 2012. Automated mapping of rock discontinuities in 3D lidar and photogrammetry models. International Journal of Rock Mechanics and Mining Sciences, 54, 150-158. https://doi.org/10.1016/j.ijrmms.2012.06.003 | es_ES |
dc.description.references | Micheletti, N., Chandler, J.H., Lane, S.N. 2015. Structure from motion (SFM) photogrammetry. In: Clarke, L.E. & Nield, J.M. (eds.) Geomorphological Techniques. British Society for Geomorphology, London. | es_ES |
dc.description.references | Miller, S.M. 1988. Modeling Shear Strength at Low Normal Stresses for Enhanced Rock Slope Engineer-ing. In: Youd, T.L., Case, W.F., Keane, E.G. & Rausher, L.H. (eds.) 39th Highway Geology Symposium. Brigham Young University Press, North Caroline, USA, 346-356. | es_ES |
dc.description.references | Riquelme, A., Araújo, N., Cano, M., Pastor, J.L., Tomás, R., Miranda, T. 2020a. Identification of Persistent Discontinuities on a Granitic Rock Mass Through 3D Datasets and Traditional Fieldwork: A Comparative Analysis. In: Correia, A.G., Tinoco, J., Cortez, P. & Lamas, L. (eds.) Information Technology in Geo-Engineering. Springer International Publishing, Cham, 868-878. https://doi.org/10.1007/978-3-030-32029-4_73 | es_ES |
dc.description.references | Riquelme, A., Cano, M., Tomás, R., Abellán, A. 2017. Identification of Rock Slope Discontinuity Sets from Laser Scanner and Photogrammetric Point Clouds: A Comparative Analysis. Procedia Engineering, 191, 838-845. https://doi.org/10.1016/j.proeng.2017.05.251 | es_ES |
dc.description.references | Riquelme, A., Tomás, R., Cano, M., Pastor, J.L., Abellán, A. 2018. Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds. Rock Mechanics and Rock Engineering, 51, 30053028, https://doi.org/10.1007/s00603-018-1519-9 | es_ES |
dc.description.references | Riquelme, A.J. 2015. Uso de nubes de puntos 3D para identificación y caracterización de familias de discontinuidades planas en afloramientos rocosos y evaluación de la calidad geomecánica, Universidad de Alicante. | es_ES |
dc.description.references | Riquelme, A.J., Abellán, A., Tomás, R. 2015. Discontinuity spacing analysis in rock masses using 3D point clouds. Engineering Geology, 195, 185-195. https://doi.org/10.1016/j.enggeo.2015.06.009 | es_ES |
dc.description.references | Riquelme, A.J., Abellán, A., Tomás, R., Jaboyedoff, M. 2014. A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Computers & Geosciences, 68, 38-52. https://doi.org/10.1016/j.cageo.2014.03.014 | es_ES |
dc.description.references | Riquelme, A.J., Abellán, A., Tomás, R, Jaboyedoff, M. 2020b. Discontinuity Set Extractor World Wide Recuperado de https://personal.ua.es/en/ariquelme/ discontinuity-set-extractor-software.html | es_ES |
dc.description.references | Riquelme, A.J., Tomás, R., Abellán, A. 2016. Characterization of rock slopes through slope mass rating using 3D point clouds. International Journal of Rock Mechanics and Mining Sciences, 84, 165-176. https://doi.org/10.1016/j.ijrmms.2015.12.008 | es_ES |
dc.description.references | Rocscience Inc. 2020a. RocPlane. Toronto, Canada. https://www.rocscience.com/software/rocplane | es_ES |
dc.description.references | Rocscience Inc. 2020b. SWedge. Toronto, Canada. https://www.rocscience.com/software/swedge | es_ES |
dc.description.references | Royán, M., Abellán, A., Jaboyedoff, M., Vilaplana, J. & Calvet, J. 2014. Spatio-temporal analysis of rockfall pre-failure deformation using Terrestrial LiDAR. Landslides, 11, 697-709. https://doi.org/10.1007/s10346-013-0442-0 | es_ES |
dc.description.references | Slob, S. 2010. Automated rock mass characterization using 3D terrestrial laser scanner, Technical University of Delf. | es_ES |
dc.description.references | Sturzenegger, M., Stead, D. 2009a. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology, 106, 163-182. https://doi.org/10.1016/j.enggeo.2009.03.004 | es_ES |
dc.description.references | Sturzenegger, M., Stead, D. 2009b. Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Nat. Hazards Earth Syst. Sci., 9, 267-287. https://doi.org/10.5194/nhess-9-267-2009 | es_ES |
dc.description.references | Sturzenegger, M., Stead, D., Elmo, D. 2011. Terrestrial remote sensing-based estimation of mean trace length, trace intensity and block size/shape. Engineering Geology, 119, 96-111, https://doi.org/10.1016/j.enggeo.2011.02.005 | es_ES |
dc.description.references | Tomás, R., Pagán, J.I., Riquelme, A., Cano, M., Pastor, J.L. 2019. Kinematic Analysis Tool, KAT. Disponible en http://hdl.handle.net/10045/90669 | es_ES |
dc.description.references | Tomás, R., Riquelme, A., Cano, M.A., Jordá, L. 2016. Structure from Motion (SfM): una técnica fotogramétrica de bajo coste para la caracterización y monitoreo de macizos rocosos. 10º Simposio Nacional Ingeniería Geotécnica, La Coruña. | es_ES |
dc.description.references | Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M. 2012. 'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021 | es_ES |
dc.description.references | Zhou, X., Chen, J., Chen, Y., Song, S., Shi, M., Zhan, J. 2017. Bayesian-based probabilistic kinematic analysis of discontinuity-controlled rock slope instabilities. Bulletin of Engineering Geology and the Environment, 76, 1249-1262. https://doi.org/10.1007/s10064-016-0972-5 | es_ES |