- -

Phenological characterization of Fagus sylvatica L. in Mediterranean populations of the Spanish Central Range with Landsat OLI/ETM+ and Sentinel-2A/B

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Phenological characterization of Fagus sylvatica L. in Mediterranean populations of the Spanish Central Range with Landsat OLI/ETM+ and Sentinel-2A/B

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gómez, C. es_ES
dc.contributor.author Alejandro, P. es_ES
dc.contributor.author Montes, F. es_ES
dc.date.accessioned 2020-06-30T09:30:53Z
dc.date.available 2020-06-30T09:30:53Z
dc.date.issued 2020-06-23
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/147175
dc.description.abstract [EN] The Spanish Central Range hosts some of the southernmost populations of Fagus sylvatica L. (European beech). Recent cartography indicates that these populations are expanding, going up-streams and gaining ground to oak forests of Quercus pyrenaica Willd., heather-lands, and pine plantations. Understanding the spectral phenology of European beech populations—which leaf flush occurs earlier than other vegetation formations—in this Mediterranean mountain range will provide insights of the species recent dynamics, and will enable modelling its performance under future climate oscillations. Intra-annual series of 211 Landsat OLI/ETM+ images, acquired between April 2013-December 2019, and 217 Sentinel-2A/B images, acquired between April 2017-December 2019, were employed to characterize the spectral phenology of European beech populations and five other vegetation types for comparison in an area of 108000 ha. Vegetation indices (VI) including the Normalized Difference Vegetation Index (NDVI) and Tasseled Cap Angle (TCA) from Landsat, and the NDVI and Enhanced Vegetation Index (EVI) from Sentinel-2 were retrieved from sample pixels. The temporal series of these VI were modelled with Savitzky-Golay and double logistic functions, and assessed with TIMESAT software, enabling the parametric characterization of European beech spectral phenology in the area with the start, length, and end of season, as well as peak time and value. The length of beech phenological season was similar when portrayed by Landsat and Sentinel-2 NDVI time series (214 and 211 days on average for the common period 2017-2019) although start and end differed. Compared with NDVI counterparts the TCA season started and peaked later, and the EVI season was shorter. Sentinel-2 NDVI peaked higher than Landsat NDVI. The European beech had an earlier (21 days on average) start of season than competing oak forests. Joint analysis of data from the virtual constellation Landsat/ Sentinel-2 and calibration with field observations may enable more detailed knowledge of phenological traits at the landscape scale. es_ES
dc.description.abstract [ES] Algunas de las poblaciones más meridionales de Fagus sylvatica L. (haya) se encuentran en el Sistema Central español. La cartografía reciente de estas poblaciones indica que están expandiéndose a lo largo de arroyos y ganando terreno a robledales de Quercus pyrenaica Willd., brezales, y pinares. Conocer la fenología espectral de estos hayedos mediterráneos de montaña, cuya apertura de hojas se adelanta a la de otras formaciones vegetales permitiría inferir su dinámica reciente y modelizar su comportamiento frente a futuras oscilaciones climáticas. Se utilizaron 211 imágenes Landsat OLI/ETM+ adquiridas entre abril 2013-diciembre 2019 y 217 imágenes Sentinel-2A/B adquiridas entre abril 2017-diciembre 2019 para caracterizar la fenología espectral de hayedos y otras cinco formaciones vegetales en 108000 ha. Se calcularon y analizaron índices de vegetación: Normalized Difference Vegetation Index (NDVI) y Tasseled Cap Angle (TCA) con datos Landsat, NDVI y Enhanced Vegetation Index (EVI) con Sentinel-2. Se extrajeron las series temporales de estos índices en píxeles muestra para analizar mediante software TIMESAT, ajustando modelos Savitzky-Golay y función logística, y describiendo paramétricamente la fenología espectral: inicio, fin, y duración de temporada, así como momento y valor máximo del índice. Las series NDVI de Landsat y Sentinel-2 representaron una duración similar de la temporada fenológica (214 y 211 días para el periodo común de análisis, 2017-2019), aunque inicio y fin no coincidieron. Comparando con las curvas NDVI homólogas, la temporada TCA comenzó y alcanzó el pico máximo antes, y la temporada EVI fue más corta. Los valores máximos de NDVI en las series Sentinel-2 fueron más altos que los de Landsat. Los hayedos comenzaron la temporada fenológica de media 21 días antes que los robledales. El análisis conjunto de datos de la constelación virtual Landsat/Sentinel-2 y la calibración con observaciones de campo permitirá conocer mejor la fenología a escala de paisaje. es_ES
dc.description.sponsorship This work was funded by the Spanish Ministry of Science, Innovation and University through projects: AGL2013-46028-R “Forest manage-ment facing the change in forest ecosystems dynamics: a multiscale approach (SCALyFOR)” and AGL201676769-C2-1-R “Influence of nat-ural disturbance regimes and management on forests dynamics, structure and carbon balance (FORESTCHANGE)”. Field work assistance by Diego Galán, Belén Oñate, and Gregorio Cerezo, and the support of José Juárez Benítez, director of the Sierra Norte de Guadalajara Natural Park are much appreciated. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Fenología espectral es_ES
dc.subject Haya es_ES
dc.subject Landsat es_ES
dc.subject Sentinel-2 es_ES
dc.subject TIMESAT es_ES
dc.subject NDVI es_ES
dc.subject TCA es_ES
dc.subject EVI es_ES
dc.subject Spectral phenology es_ES
dc.subject European beech es_ES
dc.title Phenological characterization of Fagus sylvatica L. in Mediterranean populations of the Spanish Central Range with Landsat OLI/ETM+ and Sentinel-2A/B es_ES
dc.title.alternative Caracterización de la fenología de Fagus sylvatica L. en poblaciones mediterráneas del Sistema Central español mediante datos Landsat OLI/ETM+ y Sentinel-2A/B es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2020.13561
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2016-76769-C2-1-R/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2013-46028-R/ES/LA GESTION FORESTAL FRENTE A LOS CAMBIOS EN LA DINAMICA DE LOS ECOSISTEMAS FORESTALES: UN ENFOQUE MULTIESCALA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Gómez, C.; Alejandro, P.; Montes, F. (2020). Phenological characterization of Fagus sylvatica L. in Mediterranean populations of the Spanish Central Range with Landsat OLI/ETM+ and Sentinel-2A/B. Revista de Teledetección. 0(55):71-80. https://doi.org/10.4995/raet.2020.13561 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2020.13561 es_ES
dc.description.upvformatpinicio 71 es_ES
dc.description.upvformatpfin 80 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 0 es_ES
dc.description.issue 55 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\13561 es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Augspurger, C.K. 2013. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. Ecology 94, 41-50. https://doi.org/10.1890/12-0200.1 es_ES
dc.description.references Bolton, D.K., Gray, J.M, Melaas, E.K., Moon, M., Eklundh, L., Friedl, M.A. 2020. Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery, Remote Sensing of Environment, 240, 111685. https://doi.org/10.1016/j.rse.2020.111685 es_ES
dc.description.references Bucha T, Koren, M. 2017. Phenology of the beech forests in the Western Carpathians from MODIS for 2000-2015. iForest (Biosciences and Forestry), 10, 537-546. https://doi.org/10.3832/ifor2062-010 es_ES
dc.description.references Crist, E.P. 1985. A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sensing of Environment, 17, 301-306. https://doi.org/10.1016/0034-4257(85)90102-6 es_ES
dc.description.references Delhon, C., Thiébault, S. 2005. The migration of beech (Fagus sylvatica L.) up the Rhone: the Mediterranean history of a "mountain" species. Veget. Hist. Archaeobot., 14, 119-132. https://doi.org/10.1007/s00334-005-0068-9 es_ES
dc.description.references Dittmar, C., Elling, W. 2006. Phenological phases of common beech (Fagus sylvatica L.) and their dependence on region and altitude in Southern Germany. European Journal of Forest Research, 125, 181-188. https://doi.org/10.1007/s10342-005-0099-x es_ES
dc.description.references Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernández, V., Gascon, F., Hoesrch, B., Isola, C., Labertini, P., Marimort, P., Meygret, A., Spoto, F., Sya, O., Marchese, F., Bargellini, P. 2012. Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25-36. https://doi.org/10.1016/j.rse.2011.11.026 es_ES
dc.description.references Eklundh, L., Jönsson, P. 2017. Timesat 3.3 Software Manual, Lund and Malmö University, Sweden. es_ES
dc.description.references Fang, J., Lechovicz, M.J. 2006. Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography, 33, 1804-1819. https://doi.org/10.1111/j.1365-2699.2006.01533.x es_ES
dc.description.references Fu, Y.H., Piao S., Op de Beeck, M.O., Cong, N., Zhao, H., Zhang, Y., Menzel, A., Janssens, I.A., 2014. Recent spring phenology shifts in western Central Europe based on multiscale observations. Global Ecology and Biogeography, 23(11), 1255-1263. https://doi.org/10.1111/geb.12210 es_ES
dc.description.references Gerard F.F., George, C.T., Hayman, G., Chavana- Bryant, C., Weedon, G.P. 2020. Leaf phenology amplitude derived from MODIS NDVI and EVI: maps of leaf phenology synchrony for Meso- and South America. Geosciences Data Journal, 00, 1-14. https://doi.org/10.1002/gdj3.87 es_ES
dc.description.references Gao, B.C. 1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3 es_ES
dc.description.references Gil, L., Náger, J.A., Aranda-García, I., González- Doncel, I., Gonzalo-Jiménez, J., López de Heredia, U., Millerón, M., Nanos, N., Perea García-Calvo, R., Rodríguez-Calcerrada, J., Valbuena-Carabaña, M. 2010. El Hayedo de Montejo: una gestión sostenible. Dirección General del Medio Ambiente, Spain, 151 pp. es_ES
dc.description.references Gómez, C., Alejandro, P., Aulló-Maestro, I., Hernández, L., Sánchez de Dios, R., Sainz-Ollero, H., Velázquez, J.C., Montes, F. 2019. Presence of European beech in its Spanish southernmost limit characterized with Landsat intra-annual time series. Proceedings of the AIT 2018, IX Conference of the Italian Society of Remote Sensing. es_ES
dc.description.references Gonzalo, J. 2010. Diagnosis fitoclimática de la España peninsular. Hacia un modelo de clasificación funcional de la vegetación y de los ecosistemas peninsulares españoles. Serie Técnica: Naturaleza y Parques Nacionales. Ministerio de Medio Ambiente y Medio Rural y Marino. Organismo Autónomo Parques Nacionales. es_ES
dc.description.references Herrera, S., Gutiérrez, J.M., Ancell, R., Pons, M.R., Frías, M.D., Fernández, J. 2012. Development and Analysis of a 50 year high-resolution daily gridded precipitation dataset over Spain (Spain02). International Journal of Climatology, 32, 74-85. https://doi.org/10.1002/joc.2256 es_ES
dc.description.references Houston Durrant, T., de Rigo, D., Candullo, G. 2016. Fagus sylvatica and other beeches in Europe: distribution, habitat, usage and threats in San Miguel Ayanz, J., de Rigo, D., Candullo, G., Houston Durrant, T., Mauri, A. (eds.) European Atlas of Forest Tree Species. Publication Office of the European Union, Luxembourg, pp.e012b90 es_ES
dc.description.references Jönsson, P., Cai., Z., Melaas, E., Friedl, M., Eklundh, L. 2018. A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data. Remote Sensing, 10, 365. https://doi.org/10.3390/rs10040635 es_ES
dc.description.references Li, J., Roy, D.P. 2017. A global analysis of Sentinel- 2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sensing, 9, 902. https://doi.org/10.3390/rs9090902 es_ES
dc.description.references Liu, H.Q., Huete, A.R. 1995. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 33, 457-465. https://doi.org/10.1109/TGRS.1995.8746027 es_ES
dc.description.references Melaas, E.K., Friedl, M.A., Zhu, Z. 2013. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sensing of Environment, 132, 176-185. https://doi.org/10.1016/j.rse.2013.01.011 es_ES
dc.description.references Melaas, E.K., Sulla-Menashe, D., Gray, J.M., Black, T.A., Morin, T.H., Andrew, D.R., Friedl, M.A. 2016. Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat. Remote Sensing of Environment, 186, 452-464. https://doi.org/10.1016/j.rse.2016.09.014 es_ES
dc.description.references Powell, S.L., Cohen, W.B., Healey, S.P., Kennedy, R.E., Moisen, G.G., Pierce, K.B., Ohmann, J.L. 2010. Quantification of live aboveground biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches. Remote Sensing of Environment, 114, 1053-1068. https://doi.org/10.1016/j.rse.2009.12.018 es_ES
dc.description.references Rubio-Cuadrado, A., Camarero, J.J., Del Río, M., Sánchez-González, M., Ruiz-Peinado, R., Bravo- Oviedo, A., Gil, L., Montes, F. 2018. Long-term impacts of drought on growth and forest dynamics in a temperate beech-oak-birch forest. Agricultural and Forest Meteorology, 259, 48-59. https://doi.org/10.1016/j.agrformet.2018.04.015 es_ES
dc.description.references Ruiz-Labourdette, D., Nogués-Bravo, D., Sainz- Ollero, H., Schmitz, M.F., Pineda, F.D. 2012. Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. Journal of Biogeography, 39, 162-176. https://doi.org/10.1111/j.1365-2699.2011.02592.x es_ES
dc.description.references Sánchez de Dios, R., Hernández, L., Montes, F., Sainz- Ollero, H., Cañellas, I. 2016. Tracking the leading edge of Fagus sylvatica in North-Western Iberia: Holocene migration inertia, forest succession and recent global change. Perspectives in Plant Ecology, Evolution and Systematics, 20, 11-21. https://doi.org/10.1016/j.ppees.2016.03.001 es_ES
dc.description.references Sánchez de Dios, R., Gómez, .C, Aulló, I., Cañellas, I., Gea-Izquierdo, G., Montes, F., Sain-Ollero, H., Velázquez, J.C., Hernández, L. 2020. Fagus sylvatica L. peripheral populations in the Mediterranean Iberian Peninsula: climatic or anthropic relicts? Ecosystems. https://doi.org/10.1007/s10021-020-00513-8 es_ES
dc.description.references Stanimirova, R., Cai, Z., Melaas, E.K., Gray, J.M., Eklundh, L., Jönsson, P., Friedl, M.A. 2019. An empirical assessment of the MODIS land cover dynamics and TIMESAT land surface phenology algorithms. Remote Sensing, 11, 2201. https://doi.org/10.3390/rs11192201 es_ES
dc.description.references Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0 es_ES
dc.description.references Van Rossum, G., Drake, F.L., 2009. Python 3 reference manual. Soho Books. Scotts Valley, CA, USA. 244 pp. es_ES
dc.description.references Wulder, M.A., et al. 2019. Current status of Landsat program, science, and applications. Remote Sensing of Environment, 225, 127-147. https://doi.org/10.1016/j.rse.2019.02.015 es_ES
dc.description.references Zeng, L., Wardlow B.D., Xiang, D., Hu, S., Li, D. 2020. A review of phenological metrics extraction using time-series, multispectral data. Remote Sensing of Environment, 237, 111511. https://doi.org/10.1016/j.rse.2019.111511 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem