- -

Phenological characterization of Fagus sylvatica L. in Mediterranean populations of the Spanish Central Range with Landsat OLI/ETM+ and Sentinel-2A/B

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Phenological characterization of Fagus sylvatica L. in Mediterranean populations of the Spanish Central Range with Landsat OLI/ETM+ and Sentinel-2A/B

Mostrar el registro completo del ítem

Gómez, C.; Alejandro, P.; Montes, F. (2020). Phenological characterization of Fagus sylvatica L. in Mediterranean populations of the Spanish Central Range with Landsat OLI/ETM+ and Sentinel-2A/B. Revista de Teledetección. 0(55):71-80. https://doi.org/10.4995/raet.2020.13561

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147175

Ficheros en el ítem

Metadatos del ítem

Título: Phenological characterization of Fagus sylvatica L. in Mediterranean populations of the Spanish Central Range with Landsat OLI/ETM+ and Sentinel-2A/B
Otro titulo: Caracterización de la fenología de Fagus sylvatica L. en poblaciones mediterráneas del Sistema Central español mediante datos Landsat OLI/ETM+ y Sentinel-2A/B
Autor: Gómez, C. Alejandro, P. Montes, F.
Fecha difusión:
Resumen:
[EN] The Spanish Central Range hosts some of the southernmost populations of Fagus sylvatica L. (European beech). Recent cartography indicates that these populations are expanding, going up-streams and gaining ground to ...[+]


[ES] Algunas de las poblaciones más meridionales de Fagus sylvatica L. (haya) se encuentran en el Sistema Central español. La cartografía reciente de estas poblaciones indica que están expandiéndose a lo largo de arroyos ...[+]
Palabras clave: Fenología espectral , Haya , Landsat , Sentinel-2 , TIMESAT , NDVI , TCA , EVI , Spectral phenology , European beech
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista de Teledetección. (issn: 1133-0953 ) (eissn: 1988-8740 )
DOI: 10.4995/raet.2020.13561
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/raet.2020.13561
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//AGL2016-76769-C2-1-R/
info:eu-repo/grantAgreement/MINECO//AGL2013-46028-R/ES/LA GESTION FORESTAL FRENTE A LOS CAMBIOS EN LA DINAMICA DE LOS ECOSISTEMAS FORESTALES: UN ENFOQUE MULTIESCALA/
Agradecimientos:
This work was funded by the Spanish Ministry of Science, Innovation and University through projects: AGL2013-46028-R “Forest manage-ment facing the change in forest ecosystems dynamics: ...[+]
Tipo: Artículo

References

Augspurger, C.K. 2013. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. Ecology 94, 41-50. https://doi.org/10.1890/12-0200.1

Bolton, D.K., Gray, J.M, Melaas, E.K., Moon, M., Eklundh, L., Friedl, M.A. 2020. Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery, Remote Sensing of Environment, 240, 111685. https://doi.org/10.1016/j.rse.2020.111685

Bucha T, Koren, M. 2017. Phenology of the beech forests in the Western Carpathians from MODIS for 2000-2015. iForest (Biosciences and Forestry), 10, 537-546. https://doi.org/10.3832/ifor2062-010 [+]
Augspurger, C.K. 2013. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. Ecology 94, 41-50. https://doi.org/10.1890/12-0200.1

Bolton, D.K., Gray, J.M, Melaas, E.K., Moon, M., Eklundh, L., Friedl, M.A. 2020. Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery, Remote Sensing of Environment, 240, 111685. https://doi.org/10.1016/j.rse.2020.111685

Bucha T, Koren, M. 2017. Phenology of the beech forests in the Western Carpathians from MODIS for 2000-2015. iForest (Biosciences and Forestry), 10, 537-546. https://doi.org/10.3832/ifor2062-010

Crist, E.P. 1985. A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sensing of Environment, 17, 301-306. https://doi.org/10.1016/0034-4257(85)90102-6

Delhon, C., Thiébault, S. 2005. The migration of beech (Fagus sylvatica L.) up the Rhone: the Mediterranean history of a "mountain" species. Veget. Hist. Archaeobot., 14, 119-132. https://doi.org/10.1007/s00334-005-0068-9

Dittmar, C., Elling, W. 2006. Phenological phases of common beech (Fagus sylvatica L.) and their dependence on region and altitude in Southern Germany. European Journal of Forest Research, 125, 181-188. https://doi.org/10.1007/s10342-005-0099-x

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernández, V., Gascon, F., Hoesrch, B., Isola, C., Labertini, P., Marimort, P., Meygret, A., Spoto, F., Sya, O., Marchese, F., Bargellini, P. 2012. Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25-36. https://doi.org/10.1016/j.rse.2011.11.026

Eklundh, L., Jönsson, P. 2017. Timesat 3.3 Software Manual, Lund and Malmö University, Sweden.

Fang, J., Lechovicz, M.J. 2006. Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography, 33, 1804-1819. https://doi.org/10.1111/j.1365-2699.2006.01533.x

Fu, Y.H., Piao S., Op de Beeck, M.O., Cong, N., Zhao, H., Zhang, Y., Menzel, A., Janssens, I.A., 2014. Recent spring phenology shifts in western Central Europe based on multiscale observations. Global Ecology and Biogeography, 23(11), 1255-1263. https://doi.org/10.1111/geb.12210

Gerard F.F., George, C.T., Hayman, G., Chavana- Bryant, C., Weedon, G.P. 2020. Leaf phenology amplitude derived from MODIS NDVI and EVI: maps of leaf phenology synchrony for Meso- and South America. Geosciences Data Journal, 00, 1-14. https://doi.org/10.1002/gdj3.87

Gao, B.C. 1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3

Gil, L., Náger, J.A., Aranda-García, I., González- Doncel, I., Gonzalo-Jiménez, J., López de Heredia, U., Millerón, M., Nanos, N., Perea García-Calvo, R., Rodríguez-Calcerrada, J., Valbuena-Carabaña, M. 2010. El Hayedo de Montejo: una gestión sostenible. Dirección General del Medio Ambiente, Spain, 151 pp.

Gómez, C., Alejandro, P., Aulló-Maestro, I., Hernández, L., Sánchez de Dios, R., Sainz-Ollero, H., Velázquez, J.C., Montes, F. 2019. Presence of European beech in its Spanish southernmost limit characterized with Landsat intra-annual time series. Proceedings of the AIT 2018, IX Conference of the Italian Society of Remote Sensing.

Gonzalo, J. 2010. Diagnosis fitoclimática de la España peninsular. Hacia un modelo de clasificación funcional de la vegetación y de los ecosistemas peninsulares españoles. Serie Técnica: Naturaleza y Parques Nacionales. Ministerio de Medio Ambiente y Medio Rural y Marino. Organismo Autónomo Parques Nacionales.

Herrera, S., Gutiérrez, J.M., Ancell, R., Pons, M.R., Frías, M.D., Fernández, J. 2012. Development and Analysis of a 50 year high-resolution daily gridded precipitation dataset over Spain (Spain02). International Journal of Climatology, 32, 74-85. https://doi.org/10.1002/joc.2256

Houston Durrant, T., de Rigo, D., Candullo, G. 2016. Fagus sylvatica and other beeches in Europe: distribution, habitat, usage and threats in San Miguel Ayanz, J., de Rigo, D., Candullo, G., Houston Durrant, T., Mauri, A. (eds.) European Atlas of Forest Tree Species. Publication Office of the European Union, Luxembourg, pp.e012b90

Jönsson, P., Cai., Z., Melaas, E., Friedl, M., Eklundh, L. 2018. A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data. Remote Sensing, 10, 365. https://doi.org/10.3390/rs10040635

Li, J., Roy, D.P. 2017. A global analysis of Sentinel- 2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sensing, 9, 902. https://doi.org/10.3390/rs9090902

Liu, H.Q., Huete, A.R. 1995. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 33, 457-465. https://doi.org/10.1109/TGRS.1995.8746027

Melaas, E.K., Friedl, M.A., Zhu, Z. 2013. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sensing of Environment, 132, 176-185. https://doi.org/10.1016/j.rse.2013.01.011

Melaas, E.K., Sulla-Menashe, D., Gray, J.M., Black, T.A., Morin, T.H., Andrew, D.R., Friedl, M.A. 2016. Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat. Remote Sensing of Environment, 186, 452-464. https://doi.org/10.1016/j.rse.2016.09.014

Powell, S.L., Cohen, W.B., Healey, S.P., Kennedy, R.E., Moisen, G.G., Pierce, K.B., Ohmann, J.L. 2010. Quantification of live aboveground biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches. Remote Sensing of Environment, 114, 1053-1068. https://doi.org/10.1016/j.rse.2009.12.018

Rubio-Cuadrado, A., Camarero, J.J., Del Río, M., Sánchez-González, M., Ruiz-Peinado, R., Bravo- Oviedo, A., Gil, L., Montes, F. 2018. Long-term impacts of drought on growth and forest dynamics in a temperate beech-oak-birch forest. Agricultural and Forest Meteorology, 259, 48-59. https://doi.org/10.1016/j.agrformet.2018.04.015

Ruiz-Labourdette, D., Nogués-Bravo, D., Sainz- Ollero, H., Schmitz, M.F., Pineda, F.D. 2012. Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. Journal of Biogeography, 39, 162-176. https://doi.org/10.1111/j.1365-2699.2011.02592.x

Sánchez de Dios, R., Hernández, L., Montes, F., Sainz- Ollero, H., Cañellas, I. 2016. Tracking the leading edge of Fagus sylvatica in North-Western Iberia: Holocene migration inertia, forest succession and recent global change. Perspectives in Plant Ecology, Evolution and Systematics, 20, 11-21. https://doi.org/10.1016/j.ppees.2016.03.001

Sánchez de Dios, R., Gómez, .C, Aulló, I., Cañellas, I., Gea-Izquierdo, G., Montes, F., Sain-Ollero, H., Velázquez, J.C., Hernández, L. 2020. Fagus sylvatica L. peripheral populations in the Mediterranean Iberian Peninsula: climatic or anthropic relicts? Ecosystems. https://doi.org/10.1007/s10021-020-00513-8

Stanimirova, R., Cai, Z., Melaas, E.K., Gray, J.M., Eklundh, L., Jönsson, P., Friedl, M.A. 2019. An empirical assessment of the MODIS land cover dynamics and TIMESAT land surface phenology algorithms. Remote Sensing, 11, 2201. https://doi.org/10.3390/rs11192201

Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0

Van Rossum, G., Drake, F.L., 2009. Python 3 reference manual. Soho Books. Scotts Valley, CA, USA. 244 pp.

Wulder, M.A., et al. 2019. Current status of Landsat program, science, and applications. Remote Sensing of Environment, 225, 127-147. https://doi.org/10.1016/j.rse.2019.02.015

Zeng, L., Wardlow B.D., Xiang, D., Hu, S., Li, D. 2020. A review of phenological metrics extraction using time-series, multispectral data. Remote Sensing of Environment, 237, 111511. https://doi.org/10.1016/j.rse.2019.111511

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem