Alonso, M., Rozados, M.J., Vega, J.A., Pérez- Gorostiaga, P., Cuiñas, P., Fontúrbel, M.T., Fernández, C. 2002. Biochemical Responses of Pinus pinaster Trees to Fire-Induced Trunk Girdling and Crown Scorch: Secondary Metabolites and Pigments as Needle Chemical Indicators. Journal of Chemical Ecology, 28(4), 687-700. https://doi.org/10.1023/A:1015276423880
Armah, F., Odoi, J., Yengoh, G., Obiri, S., Yawson, D., Afrifa, E. 2011. Food security and climate change in drought-sensitive savanna zones of Ghana. Mitigation and Adaptation Strategies for Global Change, 16, 291-306. https://doi.org/10.1007/s11027-010-9263-9
Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P., Smets, B. 2013. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sensing of Environment, 137, 299-309. https://doi.org/10.1016/j.rse.2012.12.027
[+]
Alonso, M., Rozados, M.J., Vega, J.A., Pérez- Gorostiaga, P., Cuiñas, P., Fontúrbel, M.T., Fernández, C. 2002. Biochemical Responses of Pinus pinaster Trees to Fire-Induced Trunk Girdling and Crown Scorch: Secondary Metabolites and Pigments as Needle Chemical Indicators. Journal of Chemical Ecology, 28(4), 687-700. https://doi.org/10.1023/A:1015276423880
Armah, F., Odoi, J., Yengoh, G., Obiri, S., Yawson, D., Afrifa, E. 2011. Food security and climate change in drought-sensitive savanna zones of Ghana. Mitigation and Adaptation Strategies for Global Change, 16, 291-306. https://doi.org/10.1007/s11027-010-9263-9
Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P., Smets, B. 2013. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sensing of Environment, 137, 299-309. https://doi.org/10.1016/j.rse.2012.12.027
Béland, M., Widlowski, J.L., Fournier, R.A. 2014. A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR. Environmental Modelling & Software, 51(0), 184- 189. https://doi.org/10.1016/j.envsoft.2013.09.034
Chadwick, K.D., Asner, G.P. 2016. Organismic- Scale Remote Sensing of Canopy Foliar Traits in Lowland Tropical Forests. Remote Sensing, 8(2), 87. https://doi.org/10.3390/rs8020087
Cleugh, H.A., Leuning, R., Mu, Q., Running, S.W. 2007. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 106(3), 285-304. https://doi.org/10.1016/j.rse.2006.07.007
Croft, H., Chen, J.M. 2017. Remote Sensing of Leaf Pigments. En S. Liang (Ed.), Comprehensive Remote Sensing (pp. 117-142). Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10547-0
Croft, H., Chen, J.M., Froelich, N.J., Chen, B., Staebler, R.M. 2015. Seasonal controls of canopy chlorophyll content on forest carbon uptake: Implications for GPP modeling. Journal of Geophysical Research: Biogeosciences, 120(8), 1576-1586. https://doi.org/10.1002/2015JG002980
Croft, H., Chen, J.M., Luo, X., Bartlett, P., Chen, B., Staebler, R.M. 2017. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Global Change Biology, 23(9), 3513-3524. https://doi.org/10.1111/gcb.13599
Croft, H., Chen, J.M., Wang, R., Mo, G., Luo, S., Luo, X., He, L., Gonsamo, A., Arabian, J., Zhang, Y., Simic-Milas, A., Noland, T.L., He, Y., Homolová, L., Malenovský, Z., Yi, Q., Beringer, J., Amiri, R., Hutley, L., Arellano, P., Stahl, C., Bonal, D. 2020. The global distribution of leaf chlorophyll content. Remote Sensing of Environment, 236, 111479. https://doi.org/10.1016/j.rse.2019.111479
Dash, J., Curran, P.J. 2007. Evaluation of the MERIS terrestrial chlorophyll index (MTCI). Advances in Space Research, 39(1), 100-104. https://doi.org/10.1016/j.asr.2006.02.034
Dorigo, W.A., Zurita-Milla, R., de Wit, A.J.W., Brazile, J., Singh, R., Schaepman, M.E. 2007. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. International Journal of Applied Earth Observation and Geoinformation, 9(2), 165-193. https://doi.org/10.1016/j.jag.2006.05.003
Doughty, C.E., Goulden, M.L. 2008. Seasonal patterns of tropical forest leaf area index and CO2 exchange. Journal of Geophysical Research: Biogeosciences, 113(G1). https://doi.org/10.1029/2007JG000590
Fan, L., Gao, Y., Brück, H., Bernhofer, C. 2009. Investigating the relationship between NDVI and LAI in semi-arid grassland in Inner Mongolia using in-situ measurements. Theoretical and Applied Climatology, 95(1), 151-156. https://doi.org/10.1007/s00704-007-0369-2
Fava, F., Colombo, R., Bocchi, S., Meroni, M., Sitzia, M., Fois, N., Zucca, C. 2009. Identification of hyperspectral vegetation indices for Mediterranean pasture characterization. International Journal of Applied Earth Observation and Geoinformation, 11(4), 233-243. https://doi.org/10.1016/j.jag.2009.02.003
Feret, J.-B., François, C., Asner, G.P., Gitelson, A.A., Martin, R.E., Bidel, L.P.R., Ustin, S.L., le Maire, G., Jacquemoud, S. 2008. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sensing of Environment, 112(6), 3030-3043. https://doi.org/10.1016/j.rse.2008.02.012
Fortunel, C., Garnier, E., Joffre, R., Kazakou, E., Quested, H., Grigulis, K., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., DoleŽal, J., Eriksson, O., Freitas, H., Golodets, C., Jouany, C., Kigel, J., Kleyer, M., Lehsten, V., Lepš, J., Meier, T., Pakeman, R., Papadimitriou, M., Papanastasis, V.P., Quétier, F., Robson, M., Sternberg, M., Theau, J.P., Thébault, A., Zarovali, M. 2009. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology, 90(3), 598- 611. https://doi.org/10.1890/08-0418.1
Fourty, T., Baret, F. 1997. Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data: A simulation study. Remote Sensing of Environment, 61(1), 34-45. https://doi.org/10.1016/S0034-4257(96)00238-6
Galvão, L.S., Formaggio, A.R., Tisot, D.A. 2005. Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sensing of Environment, 94(4), 523-534. https://doi.org/10.1016/j.rse.2004.11.012
García, M., Popescu, S., Riaño, D., Zhao, K., Neuenschwander, A., Agca, M., Chuvieco, E. 2012. Characterization of canopy fuels using ICESat/ GLAS data. Remote Sensing of Environment, 123(0), 81-89. https://doi.org/10.1016/j.rse.2012.03.018
Gitelson, A.A., Buschmann, C., Lichtenthaler, H.K. 1999. The Chlorophyll Fluorescence Ratio F735/F700 as an Accurate Measure of the Chlorophyll Content in Plants. Remote Sensing of Environment, 69(3), 296-302. https://doi.org/10.1016/S0034-4257(99)00023-1
Gitelson, A.A., Peng, Y., Viña, A., Arkebauer, T., Schepers, J.S. 2016. Efficiency of chlorophyll in gross primary productivity: A proof of concept and application in crops. Journal of Plant Physiology, 201, 101-110. https://doi.org/10.1016/j.jplph.2016.05.019
Gitelson, A.A., Viña, A., Arkebauer, T.J., Rundquist, D.C., Keydan, G., Leavitt, B. 2003. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 30(5). https://doi.org/10.1029/2002GL016450
González-Cascón, R., Martín, M.P. 2018. Protocol for pigment content quantification in herbaceous covers: sampling and analysis. https://doi.org/10.17504/protocols.io.qs6dwhe
Guillen-Climent, M., Zarco-Tejada, P., Berni, J.A.J., North, P.R.J., Villalobos, F. 2012. Mapping radiation interception in row-structured orchards using 3D simulation and high-resolution airborne imagery acquired from a UAV. Precision Agriculture, 13, 473-500. https://doi.org/10.1007/s11119-012-9263-8
Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J., Dextraze, L. 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2), 416-426. https://doi.org/10.1016/S0034-4257(02)00018-4
Haldimann, P., Gallé, A., Feller, U. 2008. Impact of an exceptionally hot dry summer on photosynthetic traits in oak (Quercus pubescens) leaves. Tree Physiology, 28(5), 785-795. https://doi.org/10.1093/ treephys/28.5.785
Hernández-Clemente, R., Navarro-Cerrillo, R.M., Suárez, L., Morales, F., Zarco-Tejada, P.J. 2011. Assessing structural effects on PRI for stress detection in conifer forests. Remote Sensing of Environment, 115(9), 2360-2375. https://doi.org/10.1016/j.rse.2011.04.036
Hernández-Clemente, R., North, P.R.J., Hornero, A., Zarco-Tejada, P.J. 2017. Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative transfer model to account for forest structure. Remote Sensing of Environment, 193, 165-179. https://doi.org/10.1016/j.rse.2017.02.012
Hill, M.J., Hanan, N.P., Hoffmann, W., Scholes, R., Prince, S., Ferwerda, J., Lucas, R.M., Baker, I., Arneth, A., Higgins, S.I., Barrett, D.J., Disney, M., Hutley, L. 2011. Remote sensing and modeling of savannas: The state of the dis-union.
Inoue, Y., Guérif, M., Baret, F., Skidmore, A., Gitelson, A., Schlerf, M., Darvishzadeh, R., Olioso, A. 2016. Simple and robust methods for remote sensing of canopy chlorophyll content: a comparative analysis of hyperspectral data for different types of vegetation. Plant, Cell & Environment, 39(12), 2609-2623. https://doi.org/10.1111/pce.12815
Inoue, Y., Peñuelas, J., Miyata, A., Mano, M. 2008. Normalized difference spectral indices for estimating photosynthetic efficiency and capacity at a canopy scale derived from hyperspectral and CO2 flux measurements in rice. Remote Sensing of Environment, 112(1), 156-172. https://doi.org/10.1016/j.rse.2007.04.011
Jacquemoud, S., Baret, F. 1990. PROSPECT: A model of leaf optical properties spectra. Remote Sensing of Environment, 34(2), 75-91. https://doi.org/10.1016/0034-4257(90)90100-Z
Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P., François, C., Ustin, S.L. 2009. PROSPECT+SAIL models: A review of use for vegetation characterization. Remote Sensing of Environment, 113, S56-S66. https://doi.org/10.1016/j.rse.2008.01.026
Jin, J., Wang, Q. 2019. Evaluation of Informative Bands Used in Different PLS Regressions for Estimating Leaf Biochemical Contents from Hyperspectral Reflectance. Remote Sensing, 11(2), 197. https://doi.org/10.3390/rs11020197
Korhonen, L., Korpela, I., Heiskanen, J., Maltamo, M. 2011. Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sensing of Environment, 115(4), 1065-1080. https://doi.org/10.1016/j.rse.2010.12.011
le Maire, G., François, C., Dufrêne, E. 2004. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment, 89(1), 1-28. https://doi.org/10.1016/j.rse.2003.09.004
le Maire, G., François, C., Soudani, K., Berveiller, D., Pontailler, J.-Y., Bréda, N., Genet, H., Davi, H., Dufrêne, E. 2008. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sensing of Environment, 112(10), 3846- 3864. https://doi.org/10.1016/j.rse.2008.06.005
Leonenko, G., Los, S.O., North, P.R.J. 2013. Retrieval of leaf area index from MODIS surface reflectance by model inversion using different minimization criteria. Remote Sensing of Environment, 139, 257-270. https://doi.org/10.1016/j.rse.2013.07.012
Li, Q., Lu, X., Wang, Y., Huang, X., Cox, P.M., Luo, Y. 2018. Leaf area index identified as a major source of variability in modeled CO2 fertilization. Biogeosciences, 15(22), 6909-6925. https://doi.org/10.5194/bg-15-6909-2018
LI-COR. 2019. LAI 2200-C Plant Canopy Analyzer instruction manual. Último acceso 5 de Junio, 2020, de https://licor.app.boxenterprise.net/s/ fqjn5mlu8c1a7zir5qel
Lichtenthaler, H.K., Buschmann, C. 2001. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1), F4.3.1-F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01
Luo, T., Pan, Y., Ouyang, H., Shi, P., Ji, L., Yu, Z., Lu, Q. 2004. Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau. Global Ecology and Biogeography, 13, 345-358. https://doi.org/10.1111/j.1466-822X.2004.00094.x
Maccioni, A., Agati, G., Mazzinghi, P. 2001. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. Journal of Photochemistry and Photobiology B: Biology, 61(1), 52-61. https://doi.org/10.1016/S1011-1344(01)00145-2
Melendo-Vega, J.R., Martín, M.P., Pacheco- Labrador, J., González-Cascón, R., Moreno, G., Pérez, F., Migliavacca, M., García, M., North, P., Riaño, D. 2018. Improving the Performance of 3-D Radiative Transfer Model FLIGHT to Simulate Optical Properties of a Tree-Grass Ecosystem. Remote Sensing, 10(12), 2061. https://doi.org/10.3390/rs10122061
Metternicht, G. 2003. Vegetation indices derived from high-resolution airborne videography for precision crop management. International Journal of Remote Sensing, 24(14), 2855-2877. https://doi.org/10.1080/01431160210163074
Miraglio, T., Adeline, K., Huesca, M., Ustin, S., Briottet, X. 2020. Monitoring LAI, Chlorophylls, and Carotenoids Content of a Woodland Savanna Using Hyperspectral Imagery and 3D Radiative Transfer Modeling. Remote Sensing, 12(1), 28. https://doi.org/10.3390/rs12010028
Moreno, G., Rolo, V. 2019. Agroforestry practices: silvopastorism. En M.R. Mosquera-Losada & R. Prabhu (Eds.), Agroforestry for sustainable agriculture (pp. 119-164): Burleigh Dodds Science Publishing Limited.
Myneni, R.B., Hoffman, S., Knyazikhin, Y., Privette, J.L., Glassy, J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G.R., Lotsch, A., Friedl, M., Morisette, J.T., Votava, P., Nemani, R.R., Running, S.W. 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 83(1), 214-231. https://doi.org/10.1016/S0034-4257(02)00074-3
North, P.R.J. 1996. Three-dimensional forest light interaction model using a Monte Carlo method. IEEE Transactions on Geoscience and Remote Sensing, 34(4), 946-956. https://doi.org/10.1109/36.508411
Novara, A., Rühl, J., La Mantia, T., Gristina, L., La Bella, S., Tuttolomondo, T. 2015. Litter contribution to soil organic carbon in the processes of agriculture abandon. Solid Earth, 6, 425-432. https://doi.org/10.5194/se-6-425-2015
Pacheco-Labrador, J., El-Madany, T.S., van der Tol, C., Martín, M.P., Gonzalez-Cascon, R., Perez-Priego, O., Guan, J., Moreno, G., Carrara, A., Reichstein, M., Migliavacca, M. 2020. senSCOPE: Modeling radiative transfer and biochemical processes in mixed canopies combining green and senescent leaves with SCOPE. bioRxiv, 2020.2002.2005.935064. https://doi.org/10.1101/2020.02.05.935064
Pacheco-Labrador, J., González-Cascón, R., Martín, M.P., Melendo-Vega, J.R., Hernández-Clemente, R., Zarco-Tejada, P. 2017. Impact of trichomes in the application of radiative transfer models in leaves of Quercus ilex. En: VII Congreso forestal español, Plasencia, España. 26-30 Junio 2017.
Pacheco-Labrador, J., Martín, M., Riaño, D., Hilker, T., Carrara, A. 2016. New approaches in multi-angular proximal sensing of vegetation: Accounting for spatial heterogeneity and diffuse radiation in directional reflectance distribution models. Remote Sensing of Environment, 187. https://doi.org/10.1016/j.rse.2016.10.051
Pacheco-Labrador, J., Perez-Priego, O., El-Madany, T.S., Julitta, T., Rossini, M., Guan, J., Moreno, G., Carvalhais, N., Martín, M.P., Gonzalez-Cascon, R., Kolle, O., Reischtein, M., van der Tol, C., Carrara, A., Martini, D., Hammer, T.W., Moossen, H., Migliavacca, M. 2019. Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits. Remote Sensing of Environment, 234, 111362. https://doi.org/10.1016/j.rse.2019.111362
Polley, H.W., Yang, C., Wilsey, B.J., Fay, P.A. 2019. Spectrally derived values of community leaf dry matter content link shifts in grassland composition with change in biomass production. Remote Sensing in Ecology and Conservation, n/a(n/a). https://doi.org/10.1002/rse2.145
Pulido, F., Picardo, A., Campos, P., Carranza, J., Coleto, J., Díaz, M., Diéguez, E., Escudero, A., Ezquerra, F., Fernández, P., Solla, A. 2010. Libro Verde de la Dehesa. Consejería de Medio Ambiente, Junta Castilla La Mancha.
Qiao, K., Zhu, W., Zhiying, X., Li, P. 2019. Estimating the Seasonal Dynamics of the Leaf Area Index Using Piecewise LAI-VI Relationships Based on Phenophases. Remote Sensing, 11(6), 689. https://doi.org/10.3390/rs11060689
Reichstein, M., Bahn, M., Mahecha, M.D., Kattge, J., Baldocchi, D.D. 2014. Linking plant and ecosystem functional biogeography. Proceedings of the National Academy of Sciences, 111(38), 13697- 13702. https://doi.org/10.1073/pnas.1216065111
Riaño, D., Valladares, F., Condes, S., Chuvieco, E. 2004. Estimation of leaf area index and covered ground from airborne laser scanner (LiDAR) in two contrasting forests. Agricultural and Forest Meteorology, 124(3-4), 269-275. https://doi.org/10.1016/j.agrformet.2004.02.005
Riaño, D., Vaughan, P., Chuvieco, E., Zarco-Tejada, P., Ustin, S.L. 2005. Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content: analysis at leaf and canopy level. IEEE Transactions on Geoscience and Remote Sensing, 43(4), 819-826. https://doi.org/10.1109/TGRS.2005.843316
Ritchie, R.J. 2008. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica, 46(1), 115- 126. https://doi.org/10.1007/s11099-008-0019-7
Rouse, J.W., Haas, R.H., Deering, D.W., Schell, J.A. 1973. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Greenbelt, Maryland.
Schlerf, M., Atzberger, C., Hill, J. 2005. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sensing of Environment, 95(2), 177-194. https://doi.org/10.1016/j.rse.2004.12.016
Shipley, B., Vu, T.T. 2002. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist, 153(2), 359-364. https://doi.org/10.1046/j.0028-646X.2001.00320.x
Sims, D.A., Gamon, J.A. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2), 337-354. https://doi.org/10.1016/S0034-4257(02)00010-X
Van Cleemput, E., Vanierschot, L., Fernández- Castilla, B., Honnay, O., Somers, B. 2018. The functional characterization of grass- and shrubland ecosystems using hyperspectral remote sensing: trends, accuracy and moderating variables. Remote Sensing of Environment, 209, 747-763. https://doi.org/10.1016/j.rse.2018.02.030
Verhoef, W. 1984. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sensing of Environment, 16(2), 125- 141. https://doi.org/10.1016/0034-4257(84)90057-9
Verrelst, J., Malenovský, Z., Van der Tol, C., Camps- Valls, G., Gastellu-Etchegorry, J.P., Lewis, P., North, P., Moreno, J. 2019. Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surveys in Geophysics, 40(3), 589-629. https://doi.org/10.1007/s10712-018-9478-y
Vogelmann, J.E., Rock, B.N., Moss, D.M. 1993. Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 14(8), 1563- 1575. https://doi.org/10.1080/01431169308953986
Wang, Q., Adiku, S., Tenhunen, J., Granier, A. 2005. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sensing of Environment, 94(2), 244-255. https://doi.org/10.1016/j.rse.2004.10.006
Wang, S., Li, Y., Ju, W., Chen, B., Chen, J., Croft, H., Mickler, R.A., Yang, F. 2020. Estimation of Leaf Photosynthetic Capacity From Leaf Chlorophyll Content and Leaf Age in a Subtropical Evergreen Coniferous Plantation. Journal of Geophysical Research: Biogeosciences, 125(2), e2019JG005020. https://doi.org/10.1029/2019JG005020
Watson, D.J. 1947. Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of Botany, 11(1), 41-76. https://doi.org/10.1093/oxfordjournals.aob.a083148
Wenhan, Q. 1993. Modeling bidirectional reflectance of multicomponent vegetation canopies. Remote Sensing of Environment, 46(3), 235-245. https://doi.org/10.1016/0034-4257(93)90045-Y
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R. 2004. The worldwide leaf economics spectrum. Nature, 428(6985), 821-827. https://doi.org/10.1038/nature02403
Yebra, M., Dennison, P.E., Chuvieco, E., Riaño, D., Zylstra, P., Hunt, E.R., Danson, F.M., Qi, Y., Jurdao, S. 2013. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sensing of Environment, 136, 455-468. https://doi.org/10.1016/j.rse.2013.05.029
[-]