- -

Resorcinol Functionalized Gold Nanoparticles for Formaldehyde Colorimetric Detection

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Resorcinol Functionalized Gold Nanoparticles for Formaldehyde Colorimetric Detection

Show simple item record

Files in this item

dc.contributor.author Martínez-Aquino, Carlos es_ES
dc.contributor.author Costero, Ana M. es_ES
dc.contributor.author Gil Grau, Salvador es_ES
dc.contributor.author Gaviña, Pablo es_ES
dc.date.accessioned 2020-07-02T06:50:53Z
dc.date.available 2020-07-02T06:50:53Z
dc.date.issued 2019-02-22 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147317
dc.description.abstract [EN] Gold nanoparticles functionalized with resorcinol moieties have been prepared and used for detecting formaldehyde both in solution and gas phases. The detection mechanism is based on the color change of the probe upon the aggregation of the nanoparticles induced by the polymerization of the resorcinol moieties in the presence of formaldehyde. A limit of detection of 0.5 ppm in solution has been determined. The probe can be deployed for the detection of formaldehyde emissions from composite wood boards. es_ES
dc.description.sponsorship We thank the Spanish Government (projects MAT2015-64139-C4-4-R and AGL2015-70235-C2-2-R (MINECO/FEDER)) and the Generalitat Valenciana (project PROMETEOII/2014/047) for support. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-4-R/ES/QUIMIOSENSORES CROMOGENICOS Y FLUOROGENICOS PARA LA DETECCION DE NEUROTRASMISORES/ es_ES
dc.relation GV/PROMETEOII/2014/047 es_ES
dc.relation MICINN/AGL2015-70235-C2-2-R es_ES
dc.relation.ispartof Nanomaterials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Gold nanoparticles es_ES
dc.subject Colorimetric detection es_ES
dc.subject Formaldehyde es_ES
dc.subject Resorcinol es_ES
dc.title Resorcinol Functionalized Gold Nanoparticles for Formaldehyde Colorimetric Detection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/nano9020302 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.description.bibliographicCitation Martínez-Aquino, C.; Costero, AM.; Gil Grau, S.; Gaviña, P. (2019). Resorcinol Functionalized Gold Nanoparticles for Formaldehyde Colorimetric Detection. Nanomaterials. 9(2):1-9. https://doi.org/10.3390/nano9020302 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/nano9020302 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2079-4991 es_ES
dc.identifier.pmid 30813298 es_ES
dc.identifier.pmcid PMC6409679 es_ES
dc.relation.pasarela S\403153 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Salthammer, T. (2013). Formaldehyde in the Ambient Atmosphere: From an Indoor Pollutant to an Outdoor Pollutant? Angewandte Chemie International Edition, 52(12), 3320-3327. doi:10.1002/anie.201205984 es_ES
dc.description.references Bruemmer, K. J., Brewer, T. F., & Chang, C. J. (2017). Fluorescent probes for imaging formaldehyde in biological systems. Current Opinion in Chemical Biology, 39, 17-23. doi:10.1016/j.cbpa.2017.04.010 es_ES
dc.description.references Lang, I., Bruckner, T., & Triebig, G. (2008). Formaldehyde and chemosensory irritation in humans: A controlled human exposure study. Regulatory Toxicology and Pharmacology, 50(1), 23-36. doi:10.1016/j.yrtph.2007.08.012 es_ES
dc.description.references IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 100F (2012). Chemical Agents and Related Occupations: Formaldehydehttps://monographs.iarc.fr/wp-content/uploads/2018/06/mono100F-29.pdf es_ES
dc.description.references Chung, P.-R., Tzeng, C.-T., Ke, M.-T., & Lee, C.-Y. (2013). Formaldehyde Gas Sensors: A Review. Sensors, 13(4), 4468-4484. doi:10.3390/s130404468 es_ES
dc.description.references Soman, A., Qiu, Y., & Chan Li, Q. (2008). HPLC-UV Method Development and Validation for the Determination of Low Level Formaldehyde in a Drug Substance. Journal of Chromatographic Science, 46(6), 461-465. doi:10.1093/chromsci/46.6.461 es_ES
dc.description.references Risholm-Sundman, M., Larsen, A., Vestin, E., & Weibull, A. (2007). Formaldehyde emission—Comparison of different standard methods. Atmospheric Environment, 41(15), 3193-3202. doi:10.1016/j.atmosenv.2006.10.079 es_ES
dc.description.references Kim, S., & Kim, H.-J. (2005). Comparison of standard methods and gas chromatography method in determination of formaldehyde emission from MDF bonded with formaldehyde-based resins. Bioresource Technology, 96(13), 1457-1464. doi:10.1016/j.biortech.2004.12.003 es_ES
dc.description.references Yeh, T.-S., Lin, T.-C., Chen, C.-C., & Wen, H.-M. (2013). Analysis of free and bound formaldehyde in squid and squid products by gas chromatography–mass spectrometry. Journal of Food and Drug Analysis, 21(2), 190-197. doi:10.1016/j.jfda.2013.05.010 es_ES
dc.description.references Toews, J., Rogalski, J. C., Clark, T. J., & Kast, J. (2008). Mass spectrometric identification of formaldehyde-induced peptide modifications under in vivo protein cross-linking conditions. Analytica Chimica Acta, 618(2), 168-183. doi:10.1016/j.aca.2008.04.049 es_ES
dc.description.references Zhou, X., Lee, S., Xu, Z., & Yoon, J. (2015). Recent Progress on the Development of Chemosensors for Gases. Chemical Reviews, 115(15), 7944-8000. doi:10.1021/cr500567r es_ES
dc.description.references Zhou, Y., Yan, J., Zhang, N., Li, D., Xiao, S., & Zheng, K. (2018). A ratiometric fluorescent probe for formaldehyde in aqueous solution, serum and air using aza-cope reaction. Sensors and Actuators B: Chemical, 258, 156-162. doi:10.1016/j.snb.2017.11.043 es_ES
dc.description.references Chaiendoo, K., Sooksin, S., Kulchat, S., Promarak, V., Tuntulani, T., & Ngeontae, W. (2018). A new formaldehyde sensor from silver nanoclusters modified Tollens’ reagent. Food Chemistry, 255, 41-48. doi:10.1016/j.foodchem.2018.02.030 es_ES
dc.description.references El Sayed, S., Pascual, L., Licchelli, M., Martínez-Máñez, R., Gil, S., Costero, A. M., & Sancenón, F. (2016). Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles. ACS Applied Materials & Interfaces, 8(23), 14318-14322. doi:10.1021/acsami.6b03224 es_ES
dc.description.references Martínez-Aquino, C., Costero, A., Gil, S., & Gaviña, P. (2018). A New Environmentally-Friendly Colorimetric Probe for Formaldehyde Gas Detection under Real Conditions. Molecules, 23(10), 2646. doi:10.3390/molecules23102646 es_ES
dc.description.references Guo, X.-L., Chen, Y., Jiang, H.-L., Qiu, X.-B., & Yu, D.-L. (2018). Smartphone-Based Microfluidic Colorimetric Sensor for Gaseous Formaldehyde Determination with High Sensitivity and Selectivity. Sensors, 18(9), 3141. doi:10.3390/s18093141 es_ES
dc.description.references Gangopadhyay, A., Maiti, K., Ali, S. S., Pramanik, A. K., Guria, U. N., Samanta, S. K., … Mahapatra, A. K. (2018). A PET based fluorescent chemosensor with real time application in monitoring formaldehyde emissions from plywood. Analytical Methods, 10(24), 2888-2894. doi:10.1039/c8ay00514a es_ES
dc.description.references Bi, A., Yang, S., Liu, M., Wang, X., Liao, W., & Zeng, W. (2017). Fluorescent probes and materials for detecting formaldehyde: from laboratory to indoor for environmental and health monitoring. RSC Advances, 7(58), 36421-36432. doi:10.1039/c7ra05651f es_ES
dc.description.references Saha, K., Agasti, S. S., Kim, C., Li, X., & Rotello, V. M. (2012). Gold Nanoparticles in Chemical and Biological Sensing. Chemical Reviews, 112(5), 2739-2779. doi:10.1021/cr2001178 es_ES
dc.description.references Mayer, K. M., & Hafner, J. H. (2011). Localized Surface Plasmon Resonance Sensors. Chemical Reviews, 111(6), 3828-3857. doi:10.1021/cr100313v es_ES
dc.description.references Kong, B., Zhu, A., Luo, Y., Tian, Y., Yu, Y., & Shi, G. (2011). Sensitive and Selective Colorimetric Visualization of Cerebral Dopamine Based on Double Molecular Recognition. Angewandte Chemie International Edition, 50(8), 1837-1840. doi:10.1002/anie.201007071 es_ES
dc.description.references Ma, P., Liang, F., Wang, D., Yang, Q., Ding, Y., Yu, Y., … Wang, X. (2014). Ultrasensitive determination of formaldehyde in environmental waters and food samples after derivatization and using silver nanoparticle assisted SERS. Microchimica Acta, 182(3-4), 863-869. doi:10.1007/s00604-014-1400-9 es_ES
dc.description.references Wen, G., Liang, X., Liang, A., & Jiang, Z. (2015). Gold Nanorod Resonance Rayleigh Scattering-Energy Transfer Spectral Determination of Trace Formaldehyde with 4-Amino-3-Hydrazino-5-Mercap-1,2,4-Triazole. Plasmonics, 10(5), 1081-1088. doi:10.1007/s11468-015-9893-6 es_ES
dc.description.references Fauzia, V., Nurlely, Imawan, C., Narayani, N. M. M. S., & Putri, A. E. (2018). A localized surface plasmon resonance enhanced dye-based biosensor for formaldehyde detection. Sensors and Actuators B: Chemical, 257, 1128-1133. doi:10.1016/j.snb.2017.11.031 es_ES
dc.description.references Al-Muhtaseb, S. A., & Ritter, J. A. (2003). Preparation and Properties of Resorcinol-Formaldehyde Organic and Carbon Gels. Advanced Materials, 15(2), 101-114. doi:10.1002/adma.200390020 es_ES
dc.description.references Martí, A., Costero, A. M., Gaviña, P., & Parra, M. (2015). Selective colorimetric NO(g) detection based on the use of modified gold nanoparticles using click chemistry. Chemical Communications, 51(15), 3077-3079. doi:10.1039/c4cc10149a es_ES
dc.description.references Godoy-Reyes, T. M., Llopis-Lorente, A., Costero, A. M., Sancenón, F., Gaviña, P., & Martínez-Máñez, R. (2018). Selective and sensitive colorimetric detection of the neurotransmitter serotonin based on the aggregation of bifunctionalised gold nanoparticles. Sensors and Actuators B: Chemical, 258, 829-835. doi:10.1016/j.snb.2017.11.181 es_ES
dc.description.references Lewicki, J. P., Fox, C. A., & Worsley, M. A. (2015). On the synthesis and structure of resorcinol-formaldehyde polymeric networks – Precursors to 3D-carbon macroassemblies. Polymer, 69, 45-51. doi:10.1016/j.polymer.2015.05.016 es_ES
dc.description.references Martí, A., Costero, A. M., Gaviña, P., Gil, S., Parra, M., Brotons-Gisbert, M., & Sánchez-Royo, J. F. (2013). Functionalized Gold Nanoparticles as an Approach to the Direct Colorimetric Detection of DCNP Nerve Agent Simulant. European Journal of Organic Chemistry, 2013(22), 4770-4779. doi:10.1002/ejoc.201300339 es_ES
dc.description.references Appendino, G., Minassi, A., Daddario, N., Bianchi, F., & Tron, G. C. (2002). Chemoselective Esterification of Phenolic Acids and Alcohols. Organic Letters, 4(22), 3839-3841. doi:10.1021/ol0266471 es_ES
dc.description.references Haiss, W., Thanh, N. T. K., Aveyard, J., & Fernig, D. G. (2007). Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Analytical Chemistry, 79(11), 4215-4221. doi:10.1021/ac0702084 es_ES
dc.description.references Liu, X., Atwater, M., Wang, J., & Huo, Q. (2007). Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B: Biointerfaces, 58(1), 3-7. doi:10.1016/j.colsurfb.2006.08.005 es_ES


This item appears in the following Collection(s)

Show simple item record