- -

Resorcinol Functionalized Gold Nanoparticles for Formaldehyde Colorimetric Detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Resorcinol Functionalized Gold Nanoparticles for Formaldehyde Colorimetric Detection

Mostrar el registro completo del ítem

Martínez-Aquino, C.; Costero, AM.; Gil Grau, S.; Gaviña, P. (2019). Resorcinol Functionalized Gold Nanoparticles for Formaldehyde Colorimetric Detection. Nanomaterials. 9(2):1-9. https://doi.org/10.3390/nano9020302

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147317

Ficheros en el ítem

Metadatos del ítem

Título: Resorcinol Functionalized Gold Nanoparticles for Formaldehyde Colorimetric Detection
Autor: Martínez-Aquino, Carlos Costero, Ana M. Gil Grau, Salvador Gaviña, Pablo
Entidad UPV: Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Fecha difusión:
Resumen:
[EN] Gold nanoparticles functionalized with resorcinol moieties have been prepared and used for detecting formaldehyde both in solution and gas phases. The detection mechanism is based on the color change of the probe upon ...[+]
Palabras clave: Gold nanoparticles , Colorimetric detection , Formaldehyde , Resorcinol
Derechos de uso: Reconocimiento (by)
Fuente:
Nanomaterials. (eissn: 2079-4991 )
DOI: 10.3390/nano9020302
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/nano9020302
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-4-R/ES/QUIMIOSENSORES CROMOGENICOS Y FLUOROGENICOS PARA LA DETECCION DE NEUROTRASMISORES/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/
info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/
Agradecimientos:
We thank the Spanish Government (projects MAT2015-64139-C4-4-R and AGL2015-70235-C2-2-R (MINECO/FEDER)) and the Generalitat Valenciana (project PROMETEOII/2014/047) for support.
Tipo: Artículo

References

Salthammer, T. (2013). Formaldehyde in the Ambient Atmosphere: From an Indoor Pollutant to an Outdoor Pollutant? Angewandte Chemie International Edition, 52(12), 3320-3327. doi:10.1002/anie.201205984

Bruemmer, K. J., Brewer, T. F., & Chang, C. J. (2017). Fluorescent probes for imaging formaldehyde in biological systems. Current Opinion in Chemical Biology, 39, 17-23. doi:10.1016/j.cbpa.2017.04.010

Lang, I., Bruckner, T., & Triebig, G. (2008). Formaldehyde and chemosensory irritation in humans: A controlled human exposure study. Regulatory Toxicology and Pharmacology, 50(1), 23-36. doi:10.1016/j.yrtph.2007.08.012 [+]
Salthammer, T. (2013). Formaldehyde in the Ambient Atmosphere: From an Indoor Pollutant to an Outdoor Pollutant? Angewandte Chemie International Edition, 52(12), 3320-3327. doi:10.1002/anie.201205984

Bruemmer, K. J., Brewer, T. F., & Chang, C. J. (2017). Fluorescent probes for imaging formaldehyde in biological systems. Current Opinion in Chemical Biology, 39, 17-23. doi:10.1016/j.cbpa.2017.04.010

Lang, I., Bruckner, T., & Triebig, G. (2008). Formaldehyde and chemosensory irritation in humans: A controlled human exposure study. Regulatory Toxicology and Pharmacology, 50(1), 23-36. doi:10.1016/j.yrtph.2007.08.012

IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 100F (2012). Chemical Agents and Related Occupations: Formaldehydehttps://monographs.iarc.fr/wp-content/uploads/2018/06/mono100F-29.pdf

Chung, P.-R., Tzeng, C.-T., Ke, M.-T., & Lee, C.-Y. (2013). Formaldehyde Gas Sensors: A Review. Sensors, 13(4), 4468-4484. doi:10.3390/s130404468

Soman, A., Qiu, Y., & Chan Li, Q. (2008). HPLC-UV Method Development and Validation for the Determination of Low Level Formaldehyde in a Drug Substance. Journal of Chromatographic Science, 46(6), 461-465. doi:10.1093/chromsci/46.6.461

Risholm-Sundman, M., Larsen, A., Vestin, E., & Weibull, A. (2007). Formaldehyde emission—Comparison of different standard methods. Atmospheric Environment, 41(15), 3193-3202. doi:10.1016/j.atmosenv.2006.10.079

Kim, S., & Kim, H.-J. (2005). Comparison of standard methods and gas chromatography method in determination of formaldehyde emission from MDF bonded with formaldehyde-based resins. Bioresource Technology, 96(13), 1457-1464. doi:10.1016/j.biortech.2004.12.003

Yeh, T.-S., Lin, T.-C., Chen, C.-C., & Wen, H.-M. (2013). Analysis of free and bound formaldehyde in squid and squid products by gas chromatography–mass spectrometry. Journal of Food and Drug Analysis, 21(2), 190-197. doi:10.1016/j.jfda.2013.05.010

Toews, J., Rogalski, J. C., Clark, T. J., & Kast, J. (2008). Mass spectrometric identification of formaldehyde-induced peptide modifications under in vivo protein cross-linking conditions. Analytica Chimica Acta, 618(2), 168-183. doi:10.1016/j.aca.2008.04.049

Zhou, X., Lee, S., Xu, Z., & Yoon, J. (2015). Recent Progress on the Development of Chemosensors for Gases. Chemical Reviews, 115(15), 7944-8000. doi:10.1021/cr500567r

Zhou, Y., Yan, J., Zhang, N., Li, D., Xiao, S., & Zheng, K. (2018). A ratiometric fluorescent probe for formaldehyde in aqueous solution, serum and air using aza-cope reaction. Sensors and Actuators B: Chemical, 258, 156-162. doi:10.1016/j.snb.2017.11.043

Chaiendoo, K., Sooksin, S., Kulchat, S., Promarak, V., Tuntulani, T., & Ngeontae, W. (2018). A new formaldehyde sensor from silver nanoclusters modified Tollens’ reagent. Food Chemistry, 255, 41-48. doi:10.1016/j.foodchem.2018.02.030

El Sayed, S., Pascual, L., Licchelli, M., Martínez-Máñez, R., Gil, S., Costero, A. M., & Sancenón, F. (2016). Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles. ACS Applied Materials & Interfaces, 8(23), 14318-14322. doi:10.1021/acsami.6b03224

Martínez-Aquino, C., Costero, A., Gil, S., & Gaviña, P. (2018). A New Environmentally-Friendly Colorimetric Probe for Formaldehyde Gas Detection under Real Conditions. Molecules, 23(10), 2646. doi:10.3390/molecules23102646

Guo, X.-L., Chen, Y., Jiang, H.-L., Qiu, X.-B., & Yu, D.-L. (2018). Smartphone-Based Microfluidic Colorimetric Sensor for Gaseous Formaldehyde Determination with High Sensitivity and Selectivity. Sensors, 18(9), 3141. doi:10.3390/s18093141

Gangopadhyay, A., Maiti, K., Ali, S. S., Pramanik, A. K., Guria, U. N., Samanta, S. K., … Mahapatra, A. K. (2018). A PET based fluorescent chemosensor with real time application in monitoring formaldehyde emissions from plywood. Analytical Methods, 10(24), 2888-2894. doi:10.1039/c8ay00514a

Bi, A., Yang, S., Liu, M., Wang, X., Liao, W., & Zeng, W. (2017). Fluorescent probes and materials for detecting formaldehyde: from laboratory to indoor for environmental and health monitoring. RSC Advances, 7(58), 36421-36432. doi:10.1039/c7ra05651f

Saha, K., Agasti, S. S., Kim, C., Li, X., & Rotello, V. M. (2012). Gold Nanoparticles in Chemical and Biological Sensing. Chemical Reviews, 112(5), 2739-2779. doi:10.1021/cr2001178

Mayer, K. M., & Hafner, J. H. (2011). Localized Surface Plasmon Resonance Sensors. Chemical Reviews, 111(6), 3828-3857. doi:10.1021/cr100313v

Kong, B., Zhu, A., Luo, Y., Tian, Y., Yu, Y., & Shi, G. (2011). Sensitive and Selective Colorimetric Visualization of Cerebral Dopamine Based on Double Molecular Recognition. Angewandte Chemie International Edition, 50(8), 1837-1840. doi:10.1002/anie.201007071

Ma, P., Liang, F., Wang, D., Yang, Q., Ding, Y., Yu, Y., … Wang, X. (2014). Ultrasensitive determination of formaldehyde in environmental waters and food samples after derivatization and using silver nanoparticle assisted SERS. Microchimica Acta, 182(3-4), 863-869. doi:10.1007/s00604-014-1400-9

Wen, G., Liang, X., Liang, A., & Jiang, Z. (2015). Gold Nanorod Resonance Rayleigh Scattering-Energy Transfer Spectral Determination of Trace Formaldehyde with 4-Amino-3-Hydrazino-5-Mercap-1,2,4-Triazole. Plasmonics, 10(5), 1081-1088. doi:10.1007/s11468-015-9893-6

Fauzia, V., Nurlely, Imawan, C., Narayani, N. M. M. S., & Putri, A. E. (2018). A localized surface plasmon resonance enhanced dye-based biosensor for formaldehyde detection. Sensors and Actuators B: Chemical, 257, 1128-1133. doi:10.1016/j.snb.2017.11.031

Al-Muhtaseb, S. A., & Ritter, J. A. (2003). Preparation and Properties of Resorcinol-Formaldehyde Organic and Carbon Gels. Advanced Materials, 15(2), 101-114. doi:10.1002/adma.200390020

Martí, A., Costero, A. M., Gaviña, P., & Parra, M. (2015). Selective colorimetric NO(g) detection based on the use of modified gold nanoparticles using click chemistry. Chemical Communications, 51(15), 3077-3079. doi:10.1039/c4cc10149a

Godoy-Reyes, T. M., Llopis-Lorente, A., Costero, A. M., Sancenón, F., Gaviña, P., & Martínez-Máñez, R. (2018). Selective and sensitive colorimetric detection of the neurotransmitter serotonin based on the aggregation of bifunctionalised gold nanoparticles. Sensors and Actuators B: Chemical, 258, 829-835. doi:10.1016/j.snb.2017.11.181

Lewicki, J. P., Fox, C. A., & Worsley, M. A. (2015). On the synthesis and structure of resorcinol-formaldehyde polymeric networks – Precursors to 3D-carbon macroassemblies. Polymer, 69, 45-51. doi:10.1016/j.polymer.2015.05.016

Martí, A., Costero, A. M., Gaviña, P., Gil, S., Parra, M., Brotons-Gisbert, M., & Sánchez-Royo, J. F. (2013). Functionalized Gold Nanoparticles as an Approach to the Direct Colorimetric Detection of DCNP Nerve Agent Simulant. European Journal of Organic Chemistry, 2013(22), 4770-4779. doi:10.1002/ejoc.201300339

Appendino, G., Minassi, A., Daddario, N., Bianchi, F., & Tron, G. C. (2002). Chemoselective Esterification of Phenolic Acids and Alcohols. Organic Letters, 4(22), 3839-3841. doi:10.1021/ol0266471

Haiss, W., Thanh, N. T. K., Aveyard, J., & Fernig, D. G. (2007). Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Analytical Chemistry, 79(11), 4215-4221. doi:10.1021/ac0702084

Liu, X., Atwater, M., Wang, J., & Huo, Q. (2007). Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B: Biointerfaces, 58(1), 3-7. doi:10.1016/j.colsurfb.2006.08.005

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem