- -

Genetic and bioclimatic variation in Solanum pimpinellifolium

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genetic and bioclimatic variation in Solanum pimpinellifolium

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zuriaga Garcia, Elena es_ES
dc.contributor.author Blanca Postigo, José Miguel es_ES
dc.contributor.author Cordero Romay, Laura es_ES
dc.contributor.author Sifres Cuerda, Alicia Gemma es_ES
dc.contributor.author Blas-Cerdán, William G. es_ES
dc.contributor.author Morales, Rafael es_ES
dc.contributor.author NUEZ VIÑALS, FERNANDO es_ES
dc.date.accessioned 2020-07-02T06:50:55Z
dc.date.available 2020-07-02T06:50:55Z
dc.date.issued 2009-02 es_ES
dc.identifier.issn 0925-9864 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147318
dc.description.abstract [EN] Solanum pimpinellifolium, due to its close relationship to S. lycopersicum, has been a genetic source for many commercially important tomato traits. It is a wild species found in the coastal areas of Peru and Ecuador. In this study, the genetic variation of S. pimpinellifolium was studied using the diversity found in 10 microsatellites in 248 plants spread throughout its entire distribution area, including Ecuador, which has been underrepresented in previous studies. Peruvian and Ecuadorian accessions are genetically quite differentiated. A possible cause of these differences could be the non-uniform nature of the coastal Ecuadorian and Peruvian climates, seeing as an important correlation between genetic differentiation and climate has been found. In addition, Ecuadorian and south Peruvian accessions have a lower genetic diversity and a higher homozygosity due to their higher autogamy, lower population size, and possible colonization bottlenecks. The Galapagos Islands population is an extreme case, with no diversity, likely caused by a recent colonization from the northern continental Ecuadorian region where genetically identical plants have been found. es_ES
dc.description.sponsorship We are deeply grateful to Dr. Javier Leon, Dr. Roberto Mendoza, and Dr. Freddy Zuniga of the Universidad Nacional de Piura; Dr. Angel Diaz Celis, and Dr. Umberto Cardoso of the Universidad Nacional Pedro Ruiz Gallo; and to Dr. Rosa de Frutos Illan, Dr. Juan Jose Ruiz, Maria Jose Diez, and Dr. Jaume Prohens of the COMAV Institute. This study wouldn't have been possible without their assistance and kind affection during the collecting expeditions organized with them throughout the years. The BBVA contributed to the funding of this research. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Genetic Resources and Crop Evolution es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Andean es_ES
dc.subject Climate es_ES
dc.subject Colonization es_ES
dc.subject Genetic structure es_ES
dc.subject Microsatellite es_ES
dc.subject Solanum pimpinellifolium es_ES
dc.subject.classification GENETICA es_ES
dc.title Genetic and bioclimatic variation in Solanum pimpinellifolium es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10722-008-9340-z es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Zuriaga Garcia, E.; Blanca Postigo, JM.; Cordero Romay, L.; Sifres Cuerda, AG.; Blas-Cerdán, WG.; Morales, R.; Nuez Viñals, F. (2009). Genetic and bioclimatic variation in Solanum pimpinellifolium. Genetic Resources and Crop Evolution. 56(1):39-51. https://doi.org/10.1007/s10722-008-9340-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s10722-008-9340-z es_ES
dc.description.upvformatpinicio 39 es_ES
dc.description.upvformatpfin 51 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 56 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\36997 es_ES
dc.contributor.funder Fundación BBVA es_ES
dc.description.references Barnaud A, Deu M, Garine E, McKey D, Joly HI (2007) Local genetic diversity of sorghum in a village in northern Cameroon: structure and dynamics of landraces. Theor Appl Genet 114:237–248 es_ES
dc.description.references Belkhir K, Borsa P, Chikhi L, Rafaste N, Bonhomme T (1996) Genetix 4.04 Logiciel sous WindowsTM pour la genetiqué des populations. Laboratoire Génome, Populations, Interactions, Université de Montpellier II, Montpellier. Website http://www.genetix.univ-montp2.fr/genetix/genetix.htm (Accessed 13 November 2007) es_ES
dc.description.references Bohs L, Olmstead RG (1997) Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst Bot 22:5–17 es_ES
dc.description.references Bonnet E, Van de Peer Y (2002) zt: a software tool for simple and partial Mantel tests. J Stat Softw 7:1–12 es_ES
dc.description.references Bouxin G (2005) Ginkgo, a multivariate analysis package. J Veg Sci 16:355–359 es_ES
dc.description.references Caicedo AL, Schall BA (2004) Population structure and phylogeography of Solanum pimpinellifolium inferred from a nuclear gene. Mol Ecol 13:1871–1882 es_ES
dc.description.references Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 32:550–570 es_ES
dc.description.references Cronin JK, Bundock PC, Henry RJ, Nevo E (2007) Adaptive climatic molecular evolution in wild barley at the Isa defense locus. Proc Natl Acad Sci USA 104:2773–2778 es_ES
dc.description.references Cuartero J, Nuez F, Díaz A (1984) Catalog of collections of Lycopersicon and Solanum pennellii from Northwest of Peru. TGC Report 34:43–46 es_ES
dc.description.references Darwin SC, Knapp S, Peralta IE (2003) Tomatoes in the Galápagos Islands: morphology of native and introduced species of Solanum section Lycopersicon (Solanaceae). Syst Biodiv 1:29–54 es_ES
dc.description.references Del Rio AH, Bamberg JB (2002) Lack of association between genetic and geographical origin characteristics for the wild potato Solanum sucrense. Am J Potato Res 79:335–338 es_ES
dc.description.references Eva HD, de Miranda EE, Di Bella CM, Gond V, Huber O, Sgrenzaroli M, Jones S, Coutinho A, Dorado A, Guimarães M, Elvidge C, Achard F, Belward AS, Bartholomé E, Baraldi A, De Grandi G, Vogt P, Fritz S, Hartley A (2002) A vegetation map of South America. Office for Official Publications of the European Communities es_ES
dc.description.references Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50 es_ES
dc.description.references Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Natl Acad Sci USA 104:1278–1282 es_ES
dc.description.references Gower JC (1966) Some distance properties of latent roots and vector methods used in multivariate analysis. Biometrika 53:325–338 es_ES
dc.description.references Harter AV, Gardner KA, Falush D, Lentz DL, Bye RA, Rieseberg LH (2004) Origin of extant domesticated sunflowers in eastern North America. Nature 430:201–205 es_ES
dc.description.references Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newsl 127:15–19 es_ES
dc.description.references IPGRI (1996) Descriptor for Tomato (Lycopersicon spp.). IPGRI es_ES
dc.description.references Jump AS, Hunt J, Martínez-Izquierdo JA, Peñuelas J (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol Ecol 15:3469–3480 es_ES
dc.description.references Juvik JA, Berlinger MJ, Ben-David T, Rudich J (1982) Resistance among accessions of the genera Lycopersicon and Solanum to four of the main insect pest of tomato in Israel. Phytoparasitica 10:145–156 es_ES
dc.description.references Langella O (2002) Populations 1.2.28, Population genetic software. CNRS es_ES
dc.description.references Li YC, Fahima T, Krugman T, Beiles A, Röder MS, Korol AB, Nevo E (2000) Parallel microgeographic patterns of genetic diversity and divergence revealed by allozyme, RAPD, and microsatellites in Triticum dicoccoides at Ammiad, Israel. Conserv Genet 1:191–207 es_ES
dc.description.references Luckwill LC (1943) The genus Lycopersicon: an historical, biological, and taxonomic survey of the wild and cultivated tomatoes. Aberdeen University Press, Aberdeen es_ES
dc.description.references Marshall JA, Knapp S, Davey MR, Power JB, Cocking EC, Bennett MD, Cox AV (2001) Molecular systematics of Solanum section Lycopersicum (Lycopersicon) using the nuclear ITS rDNA region. Theor Appl Genet 103:1216–1222 es_ES
dc.description.references Mason-Gamer RJ, Holsinger KE, Jansen RK (1995) Chloroplast DNA haplotype variation within and among populations of Coreopsis grandiflora. Mol Biol Evol 12:371–381 es_ES
dc.description.references McGregor CE, van Treuren R, Hoekstra R, van Hintum ThJL (2002) Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. Theor Appl Genet 104:146–156 es_ES
dc.description.references Mieslerova B, Lebeda A, Chetelat RT (2000) Variation in response of wild Lycopersicon and Solanum sp. against tomato powdery mildew (Oidium lycopersici). J Phytopathol 148:303–311 es_ES
dc.description.references Miller P (1754) The gardener’s dictionary. C. Rivington, London es_ES
dc.description.references Mitton JB, Duran KL (2004) Genetic variation in piñon pine, Pinus edulis, associated with summer precipitation. Mol Ecol 13:1259–1264 es_ES
dc.description.references Monrchen M, Cuguen J, Michaelis G, Hanni C, Saumitou-Laprade P (1996) Abundance and length polymorphism of microsatellite repeats in Beta vulgaris L. Theor Appl Genet 92:326–333 es_ES
dc.description.references Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 41:225–233 es_ES
dc.description.references Nuez F, Cuartero J (1984) Colectas de Lycopersicon y Solanum pennellii en el Noroeste de Perú. Plant Genet Resour Newsl 58:42–45 es_ES
dc.description.references Nuez F, Morales R, Ruíz JJ, Fernández de Córdova P, Soler S, Valdivieso E, Solórzano V (1993) Recolección de especies hortícolas en Ecuador. Plant Genet Resour Newsl 96:29–33 es_ES
dc.description.references Nuez F, Morales R, Prohens J, Fernández de Córdova P, Soler S, Valdivieso E, Solórzano V (1999) Germplasm of Solanaceae horticultural crops in the South of Ecuador. Plant Genet Resour Newsl 120:44–47 es_ES
dc.description.references Nuez F, Picó B (1999) Collections of vegetable crops and wild relatives in the Centre for Conservation and Breeding of the Agricultural Biodiversity (Spain). Plant Genet Resour Newsl 118:68 es_ES
dc.description.references Nuez F, Prohens J, Blanca JM (2004) Relationships, origin, and diversity of Galápagos tomatoes: implications for the conservation of natural populations. Am J Bot 91:86–99 es_ES
dc.description.references Owuor ED, Beharav A, Fahima T, Kirzhner VM, Korol AB, Nevo E (2003) Microscale ecological stress causes RAPD molecular selection in wild barley, Neve Yaar microsite, Israel. Genet Resour Crop Evol 50:213–223 es_ES
dc.description.references Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250 es_ES
dc.description.references Peralta IE, Spooner DM (2000) Classification of wild tomatoes: a review. Kurtziana 28:45–54 es_ES
dc.description.references Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon). Am J Bot 88:1888–1902 es_ES
dc.description.references Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959 es_ES
dc.description.references Powell W, Morgante M, Doyle JJ, McNicol JW, Tingey SV, Rafalski AJ (1996) Genepool variation in genus Glycine subgenus Soja revealed by polymorphic nuclear and chloroplast microsatellites. Genetics 144:793–803 es_ES
dc.description.references Qian H, Ricklefs RE, White PS (2005) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol Lett 8:15–22 es_ES
dc.description.references Rick CM (1976) Natural variability in wild species of Lycopersicon and its bearing on tomato breeding. Genet Agr 30:249–259 es_ES
dc.description.references Rick CM, Chetelat RT (1995) Utilization of related wild species for tomato improvement. Acta Hortic 412:21–38 es_ES
dc.description.references Rick CM, Fobes JF (1975) Allozyme variation in the cultivated tomato and closely related species. Bull Torrey Bot Club 102:376–384 es_ES
dc.description.references Rick CM, Holle M (1990) Andean Lycopersicon esculentum var. cerasiforme: genetic variation and its evolutionary significance. Econ Bot 44:69–78 es_ES
dc.description.references Rick CM, Zobel RW, Fobes JF (1974) Four peroxidase loci in red-fruited tomato species: genetics and geographic distribution. Proc Natl Acad Sci USA 71:835–839 es_ES
dc.description.references Rick CM, Fobes JF, Holle M (1977) Genetic variation in Lycopersicon pimpinellifolium: evidence of evolutionary change in mating systems. Plant Syst Evol 127:139–170 es_ES
dc.description.references Rick CM, Holle M, Thorp RW (1978) Rates of cross-pollination in Lycopersicon pimpinellifolium: impact of genetic variation in floral characters. Plant Syst Evol 129:31–44 es_ES
dc.description.references Rick CM, Fobes JF, Tanksley SD (1979) Evolution of mating systems in Lycopersion hirsutum as deduced from genetic variation in electrophoretic and morphological characters. Plant Syst Evol 132:279–298 es_ES
dc.description.references Rieseberg LH, Soltis DE (1991) Phylogenetic consequences of cytoplasmic flow in plants. Evol Trends Plants 5:65–84 es_ES
dc.description.references Roselius K, Stephan W, Stadler T (2005) The relationship of nucleotide polymorphism, recombination rate and selection in wild tomato species. Genetics 171:753–763 es_ES
dc.description.references Sifres A, Picó B, Blanca JM, De Frutos R, Nuez F (2007) Genetic structure of Lycopersicon pimpinellifolium (Solanaceae) populations collected after the ENSO event of 1997–98. Genet Resour Crop Evol 54:359–377 es_ES
dc.description.references Smulders MJM, Bredemeijer G, Rus-kortekass W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 97:264–272 es_ES
dc.description.references Warnock SJ (1991) Natural habitats of Lycopersicon species. HortScience 26:466–471 es_ES
dc.description.references Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge, UK es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem