- -

Asymptotic estimates on the von Neumann inequality for homogeneous polynomials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Asymptotic estimates on the von Neumann inequality for homogeneous polynomials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Galicer, Daniel es_ES
dc.contributor.author Muro, Santiago es_ES
dc.contributor.author Sevilla Peris, Pablo es_ES
dc.date.accessioned 2020-07-04T03:31:40Z
dc.date.available 2020-07-04T03:31:40Z
dc.date.issued 2018-10 es_ES
dc.identifier.issn 0075-4102 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147416
dc.description.abstract [EN] By the von Neumann inequality for homogeneous polynomials there exists a positive constant C-k,C-q(n) such that for every k-homogeneous polynomial p in n variables and every n-tuple of commuting operators (T-1, ..., T-n with Sigma(n)(i=1) parallel to T-i parallel to(q) <= 1 we have parallel to P (T-1, ..., T-n)parallel to L(H) <= C-k,C-q(n) sup {vertical bar p(z(1), ..., z(n))vertical bar: Sigma(n)(i=1) vertical bar(q) <= 1}. For fixed k and q, we study the asymptotic growth of the smallest constant C-k,C-q(n) as n (the number of variables/operators) tends to infinity. For q = infinity, we obtain the correct asymptotic behavior of this constant (answering a question posed by Dixon in the 1970s). For 2 <= q < infinity we improve some lower bounds given by Mantero and Tonge, and prove the asymptotic behavior up to a logarithmic factor. To achieve this we provide estimates of the norm of homogeneous unimodular Steiner polynomials, i.e. polynomials such that the multi-indices corresponding to the nonzero coefficients form partial Steiner systems. es_ES
dc.description.sponsorship The first two named authors were supported by CONICET projects PIP 0624 and PICT 2011-1456, and by UBACyT projects 20020130300057BA and 20020130300052BA. The third named author was supported by MICINN project MTM2014-57838-C2-2-P. es_ES
dc.language Inglés es_ES
dc.publisher Walter de Gruyter GmbH es_ES
dc.relation.ispartof Journal für die reine und angewandte Mathematik (Crelles Journal) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Asymptotic estimates on the von Neumann inequality for homogeneous polynomials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1515/crelle-2015-0097 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UBA/UBACyT/20020130300057BA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UBA/UBACyT/20020130300052BA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONICET//PIP 0624/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANPCyT//PICT-2011-1456/AR/Análisis multilineal y complejo en espacios de Banach/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-57838-C2-2-P/ES/ANALISIS COMPLEJO EN DIMENSION FINITA E INFINITA. GEOMETRIA DE ESPACIOS DE BANACH/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Galicer, D.; Muro, S.; Sevilla Peris, P. (2018). Asymptotic estimates on the von Neumann inequality for homogeneous polynomials. Journal für die reine und angewandte Mathematik (Crelles Journal). 743:213-227. https://doi.org/10.1515/crelle-2015-0097 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1515/crelle-2015-0097 es_ES
dc.description.upvformatpinicio 213 es_ES
dc.description.upvformatpfin 227 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 743 es_ES
dc.relation.pasarela S\384918 es_ES
dc.contributor.funder Universidad de Buenos Aires es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Nacional de Promoción Científica y Tecnológica, Argentina es_ES
dc.description.references Defant, A., Garcia, D., & Maestre, M. (2004). MAXIMUM MODULI OF UNIMODULAR POLYNOMIALS. Journal of the Korean Mathematical Society, 41(1), 209-229. doi:10.4134/jkms.2004.41.1.209 es_ES
dc.description.references Bayart, F. (2010). MAXIMUM MODULUS OF RANDOM POLYNOMIALS. The Quarterly Journal of Mathematics, 63(1), 21-39. doi:10.1093/qmath/haq026 es_ES
dc.description.references Crabb, M. J., & Davie, A. M. (1975). Von Neumann’s Inequality for Hilbert Space Operators. Bulletin of the London Mathematical Society, 7(1), 49-50. doi:10.1112/blms/7.1.49 es_ES
dc.description.references Alon, N., Kim, J.-H., & Spencer, J. (1997). Nearly perfect matchings in regular simple hypergraphs. Israel Journal of Mathematics, 100(1), 171-187. doi:10.1007/bf02773639 es_ES
dc.description.references Defant, A., Frerick, L., Ortega-Cerdà, J., Ounaïes, M., & Seip, K. (2011). The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive. Annals of Mathematics, 174(1), 485-497. doi:10.4007/annals.2011.174.1.13 es_ES
dc.description.references Maurizi, B., & Queffélec, H. (2009). Some Remarks on the Algebra of Bounded Dirichlet Series. Journal of Fourier Analysis and Applications, 16(5), 676-692. doi:10.1007/s00041-009-9112-y es_ES
dc.description.references Carando, D., & Dimant, V. (2006). Extension of polynomials and John’s theorem for symmetric tensor products. Proceedings of the American Mathematical Society, 135(6), 1769-1773. doi:10.1090/s0002-9939-06-08666-7 es_ES
dc.description.references Blei, R. C. (1979). Multidimensional extensions of the Grothendieck inequality and applications. Arkiv för Matematik, 17(1-2), 51-68. doi:10.1007/bf02385457 es_ES
dc.description.references Schütt, C. (1984). Entropy numbers of diagonal operators between symmetric Banach spaces. Journal of Approximation Theory, 40(2), 121-128. doi:10.1016/0021-9045(84)90021-2 es_ES
dc.description.references Mantero, A., & Tonge, A. (1980). The Schur multiplication in tensor algebras. Studia Mathematica, 68(1), 1-24. doi:10.4064/sm-68-1-1-24 es_ES
dc.description.references Varopoulos, N. T. (1974). On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory. Journal of Functional Analysis, 16(1), 83-100. doi:10.1016/0022-1236(74)90071-8 es_ES
dc.description.references Rödl, V. (1985). On a Packing and Covering Problem. European Journal of Combinatorics, 6(1), 69-78. doi:10.1016/s0195-6698(85)80023-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem