Mostrar el registro sencillo del ítem
dc.contributor.author | Galicer, Daniel | es_ES |
dc.contributor.author | Muro, Santiago | es_ES |
dc.contributor.author | Sevilla Peris, Pablo | es_ES |
dc.date.accessioned | 2020-07-04T03:31:40Z | |
dc.date.available | 2020-07-04T03:31:40Z | |
dc.date.issued | 2018-10 | es_ES |
dc.identifier.issn | 0075-4102 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/147416 | |
dc.description.abstract | [EN] By the von Neumann inequality for homogeneous polynomials there exists a positive constant C-k,C-q(n) such that for every k-homogeneous polynomial p in n variables and every n-tuple of commuting operators (T-1, ..., T-n with Sigma(n)(i=1) parallel to T-i parallel to(q) <= 1 we have parallel to P (T-1, ..., T-n)parallel to L(H) <= C-k,C-q(n) sup {vertical bar p(z(1), ..., z(n))vertical bar: Sigma(n)(i=1) vertical bar(q) <= 1}. For fixed k and q, we study the asymptotic growth of the smallest constant C-k,C-q(n) as n (the number of variables/operators) tends to infinity. For q = infinity, we obtain the correct asymptotic behavior of this constant (answering a question posed by Dixon in the 1970s). For 2 <= q < infinity we improve some lower bounds given by Mantero and Tonge, and prove the asymptotic behavior up to a logarithmic factor. To achieve this we provide estimates of the norm of homogeneous unimodular Steiner polynomials, i.e. polynomials such that the multi-indices corresponding to the nonzero coefficients form partial Steiner systems. | es_ES |
dc.description.sponsorship | The first two named authors were supported by CONICET projects PIP 0624 and PICT 2011-1456, and by UBACyT projects 20020130300057BA and 20020130300052BA. The third named author was supported by MICINN project MTM2014-57838-C2-2-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Walter de Gruyter GmbH | es_ES |
dc.relation.ispartof | Journal für die reine und angewandte Mathematik (Crelles Journal) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Asymptotic estimates on the von Neumann inequality for homogeneous polynomials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1515/crelle-2015-0097 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UBA/UBACyT/20020130300057BA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UBA/UBACyT/20020130300052BA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONICET//PIP 0624/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANPCyT//PICT-2011-1456/AR/Análisis multilineal y complejo en espacios de Banach/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-57838-C2-2-P/ES/ANALISIS COMPLEJO EN DIMENSION FINITA E INFINITA. GEOMETRIA DE ESPACIOS DE BANACH/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Galicer, D.; Muro, S.; Sevilla Peris, P. (2018). Asymptotic estimates on the von Neumann inequality for homogeneous polynomials. Journal für die reine und angewandte Mathematik (Crelles Journal). 743:213-227. https://doi.org/10.1515/crelle-2015-0097 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1515/crelle-2015-0097 | es_ES |
dc.description.upvformatpinicio | 213 | es_ES |
dc.description.upvformatpfin | 227 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 743 | es_ES |
dc.relation.pasarela | S\384918 | es_ES |
dc.contributor.funder | Universidad de Buenos Aires | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Nacional de Promoción Científica y Tecnológica, Argentina | es_ES |
dc.description.references | Defant, A., Garcia, D., & Maestre, M. (2004). MAXIMUM MODULI OF UNIMODULAR POLYNOMIALS. Journal of the Korean Mathematical Society, 41(1), 209-229. doi:10.4134/jkms.2004.41.1.209 | es_ES |
dc.description.references | Bayart, F. (2010). MAXIMUM MODULUS OF RANDOM POLYNOMIALS. The Quarterly Journal of Mathematics, 63(1), 21-39. doi:10.1093/qmath/haq026 | es_ES |
dc.description.references | Crabb, M. J., & Davie, A. M. (1975). Von Neumann’s Inequality for Hilbert Space Operators. Bulletin of the London Mathematical Society, 7(1), 49-50. doi:10.1112/blms/7.1.49 | es_ES |
dc.description.references | Alon, N., Kim, J.-H., & Spencer, J. (1997). Nearly perfect matchings in regular simple hypergraphs. Israel Journal of Mathematics, 100(1), 171-187. doi:10.1007/bf02773639 | es_ES |
dc.description.references | Defant, A., Frerick, L., Ortega-Cerdà, J., Ounaïes, M., & Seip, K. (2011). The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive. Annals of Mathematics, 174(1), 485-497. doi:10.4007/annals.2011.174.1.13 | es_ES |
dc.description.references | Maurizi, B., & Queffélec, H. (2009). Some Remarks on the Algebra of Bounded Dirichlet Series. Journal of Fourier Analysis and Applications, 16(5), 676-692. doi:10.1007/s00041-009-9112-y | es_ES |
dc.description.references | Carando, D., & Dimant, V. (2006). Extension of polynomials and John’s theorem for symmetric tensor products. Proceedings of the American Mathematical Society, 135(6), 1769-1773. doi:10.1090/s0002-9939-06-08666-7 | es_ES |
dc.description.references | Blei, R. C. (1979). Multidimensional extensions of the Grothendieck inequality and applications. Arkiv för Matematik, 17(1-2), 51-68. doi:10.1007/bf02385457 | es_ES |
dc.description.references | Schütt, C. (1984). Entropy numbers of diagonal operators between symmetric Banach spaces. Journal of Approximation Theory, 40(2), 121-128. doi:10.1016/0021-9045(84)90021-2 | es_ES |
dc.description.references | Mantero, A., & Tonge, A. (1980). The Schur multiplication in tensor algebras. Studia Mathematica, 68(1), 1-24. doi:10.4064/sm-68-1-1-24 | es_ES |
dc.description.references | Varopoulos, N. T. (1974). On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory. Journal of Functional Analysis, 16(1), 83-100. doi:10.1016/0022-1236(74)90071-8 | es_ES |
dc.description.references | Rödl, V. (1985). On a Packing and Covering Problem. European Journal of Combinatorics, 6(1), 69-78. doi:10.1016/s0195-6698(85)80023-8 | es_ES |