- -

Asymptotic estimates on the von Neumann inequality for homogeneous polynomials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Asymptotic estimates on the von Neumann inequality for homogeneous polynomials

Mostrar el registro completo del ítem

Galicer, D.; Muro, S.; Sevilla Peris, P. (2018). Asymptotic estimates on the von Neumann inequality for homogeneous polynomials. Journal für die reine und angewandte Mathematik (Crelles Journal). 743:213-227. https://doi.org/10.1515/crelle-2015-0097

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147416

Ficheros en el ítem

Metadatos del ítem

Título: Asymptotic estimates on the von Neumann inequality for homogeneous polynomials
Autor: Galicer, Daniel Muro, Santiago Sevilla Peris, Pablo
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] By the von Neumann inequality for homogeneous polynomials there exists a positive constant C-k,C-q(n) such that for every k-homogeneous polynomial p in n variables and every n-tuple of commuting operators (T-1, ..., ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal für die reine und angewandte Mathematik (Crelles Journal). (issn: 0075-4102 )
DOI: 10.1515/crelle-2015-0097
Editorial:
Walter de Gruyter GmbH
Versión del editor: https://doi.org/10.1515/crelle-2015-0097
Código del Proyecto:
info:eu-repo/grantAgreement/UBA/UBACyT/20020130300057BA/
info:eu-repo/grantAgreement/UBA/UBACyT/20020130300052BA/
info:eu-repo/grantAgreement/CONICET//PIP 0624/
info:eu-repo/grantAgreement/ANPCyT//PICT-2011-1456/AR/Análisis multilineal y complejo en espacios de Banach/
info:eu-repo/grantAgreement/MINECO//MTM2014-57838-C2-2-P/ES/ANALISIS COMPLEJO EN DIMENSION FINITA E INFINITA. GEOMETRIA DE ESPACIOS DE BANACH/
Agradecimientos:
The first two named authors were supported by CONICET projects PIP 0624 and PICT 2011-1456, and by UBACyT projects 20020130300057BA and 20020130300052BA. The third named author was supported by MICINN project MTM2014-57838-C2-2-P.[+]
Tipo: Artículo

References

Defant, A., Garcia, D., & Maestre, M. (2004). MAXIMUM MODULI OF UNIMODULAR POLYNOMIALS. Journal of the Korean Mathematical Society, 41(1), 209-229. doi:10.4134/jkms.2004.41.1.209

Bayart, F. (2010). MAXIMUM MODULUS OF RANDOM POLYNOMIALS. The Quarterly Journal of Mathematics, 63(1), 21-39. doi:10.1093/qmath/haq026

Crabb, M. J., & Davie, A. M. (1975). Von Neumann’s Inequality for Hilbert Space Operators. Bulletin of the London Mathematical Society, 7(1), 49-50. doi:10.1112/blms/7.1.49 [+]
Defant, A., Garcia, D., & Maestre, M. (2004). MAXIMUM MODULI OF UNIMODULAR POLYNOMIALS. Journal of the Korean Mathematical Society, 41(1), 209-229. doi:10.4134/jkms.2004.41.1.209

Bayart, F. (2010). MAXIMUM MODULUS OF RANDOM POLYNOMIALS. The Quarterly Journal of Mathematics, 63(1), 21-39. doi:10.1093/qmath/haq026

Crabb, M. J., & Davie, A. M. (1975). Von Neumann’s Inequality for Hilbert Space Operators. Bulletin of the London Mathematical Society, 7(1), 49-50. doi:10.1112/blms/7.1.49

Alon, N., Kim, J.-H., & Spencer, J. (1997). Nearly perfect matchings in regular simple hypergraphs. Israel Journal of Mathematics, 100(1), 171-187. doi:10.1007/bf02773639

Defant, A., Frerick, L., Ortega-Cerdà, J., Ounaïes, M., & Seip, K. (2011). The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive. Annals of Mathematics, 174(1), 485-497. doi:10.4007/annals.2011.174.1.13

Maurizi, B., & Queffélec, H. (2009). Some Remarks on the Algebra of Bounded Dirichlet Series. Journal of Fourier Analysis and Applications, 16(5), 676-692. doi:10.1007/s00041-009-9112-y

Carando, D., & Dimant, V. (2006). Extension of polynomials and John’s theorem for symmetric tensor products. Proceedings of the American Mathematical Society, 135(6), 1769-1773. doi:10.1090/s0002-9939-06-08666-7

Blei, R. C. (1979). Multidimensional extensions of the Grothendieck inequality and applications. Arkiv för Matematik, 17(1-2), 51-68. doi:10.1007/bf02385457

Schütt, C. (1984). Entropy numbers of diagonal operators between symmetric Banach spaces. Journal of Approximation Theory, 40(2), 121-128. doi:10.1016/0021-9045(84)90021-2

Mantero, A., & Tonge, A. (1980). The Schur multiplication in tensor algebras. Studia Mathematica, 68(1), 1-24. doi:10.4064/sm-68-1-1-24

Varopoulos, N. T. (1974). On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory. Journal of Functional Analysis, 16(1), 83-100. doi:10.1016/0022-1236(74)90071-8

Rödl, V. (1985). On a Packing and Covering Problem. European Journal of Combinatorics, 6(1), 69-78. doi:10.1016/s0195-6698(85)80023-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem