Novoselov, K. S. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666-669. doi:10.1126/science.1102896
Zhu, N., Liu, W., Xue, M., Xie, Z., Zhao, D., Zhang, M., … Cao, T. (2010). Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries. Electrochimica Acta, 55(20), 5813-5818. doi:10.1016/j.electacta.2010.05.029
Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8(3), 902-907. doi:10.1021/nl0731872
[+]
Novoselov, K. S. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666-669. doi:10.1126/science.1102896
Zhu, N., Liu, W., Xue, M., Xie, Z., Zhao, D., Zhang, M., … Cao, T. (2010). Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries. Electrochimica Acta, 55(20), 5813-5818. doi:10.1016/j.electacta.2010.05.029
Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8(3), 902-907. doi:10.1021/nl0731872
Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi:10.1038/nature04969
Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274
Torres-Giner, S., & Lagaron, J. M. (2010). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. I. Morphology and thermal properties. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.32180
Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768
Cherpinski, A., Gozutok, M., Sasmazel, H., Torres-Giner, S., & Lagaron, J. (2018). Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials, 8(7), 469. doi:10.3390/nano8070469
Asmatulu, R., Ceylan, M., & Nuraje, N. (2011). Study of Superhydrophobic Electrospun Nanocomposite Fibers for Energy Systems. Langmuir, 27(2), 504-507. doi:10.1021/la103661c
Bao, Q., Zhang, H., Yang, J., Wang, S., Tang, D. Y., Jose, R., … Loh, K. P. (2010). Graphene-Polymer Nanofiber Membrane for Ultrafast Photonics. Advanced Functional Materials, 20(5), 782-791. doi:10.1002/adfm.200901658
Li, X., Yang, Y., Zhao, Y., Lou, J., Zhao, X., Wang, R., … Huang, Z. (2017). Electrospinning fabrication and in situ mechanical investigation of individual graphene nanoribbon reinforced carbon nanofiber. Carbon, 114, 717-723. doi:10.1016/j.carbon.2016.12.082
Moayeri, A., & Ajji, A. (2016). Core–Shell Structured Graphene Filled Polyaniline/Poly(methyl methacrylate) Nanofibers by Coaxial Electrospinning. Nanoscience and Nanotechnology Letters, 8(2), 129-134. doi:10.1166/nnl.2016.2067
Moayeri, A., & Ajji, A. (2017). High Capacitance Carbon Nanofibers from Poly(acrylonitrile) and Poly(vinylpyrrolidone)-Functionalized Graphene by Electrospinning. Journal of Nanoscience and Nanotechnology, 17(3), 1820-1829. doi:10.1166/jnn.2017.12877
HIRATA, M., GOTOU, T., HORIUCHI, S., FUJIWARA, M., & OHBA, M. (2004). Thin-film particles of graphite oxide 1:High-yield synthesis and flexibility of the particles. Carbon, 42(14), 2929-2937. doi:10.1016/s0008-6223(04)00444-0
Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034
Van Turnhout, J., & Wübbenhorst, M. (2002). Analysis of complex dielectric spectra. II: Evaluation of the activation energy landscape by differential sampling. Journal of Non-Crystalline Solids, 305(1-3), 50-58. doi:10.1016/s0022-3093(02)01120-1
Dyre, J. C. (1991). Some remarks on ac conduction in disordered solids. Journal of Non-Crystalline Solids, 135(2-3), 219-226. doi:10.1016/0022-3093(91)90423-4
Yasmin, A., & Daniel, I. M. (2004). Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer, 45(24), 8211-8219. doi:10.1016/j.polymer.2004.09.054
Simon, D. A., Bischoff, E., Buonocore, G. G., Cerruti, P., Raucci, M. G., Xia, H., … Mauler, R. S. (2017). Graphene-based masterbatch obtained via modified polyvinyl alcohol liquid-shear exfoliation and its application in enhanced polymer composites. Materials & Design, 134, 103-110. doi:10.1016/j.matdes.2017.08.032
Martínez-Sanz, M., Olsson, R. T., Lopez-Rubio, A., & Lagaron, J. M. (2010). Development of electrospun EVOH fibres reinforced with bacterial cellulose nanowhiskers. Part I: Characterization and method optimization. Cellulose, 18(2), 335-347. doi:10.1007/s10570-010-9471-1
Sukumaran, S. S., Rekha, C. R., Resmi, A. N., Jinesh, K. B., & Gopchandran, K. G. (2018). Raman and scanning tunneling spectroscopic investigations on graphene-silver nanocomposites. Journal of Science: Advanced Materials and Devices, 3(3), 353-358. doi:10.1016/j.jsamd.2018.06.003
Lotya, M., King, P. J., Khan, U., De, S., & Coleman, J. N. (2010). High-Concentration, Surfactant-Stabilized Graphene Dispersions. ACS Nano, 4(6), 3155-3162. doi:10.1021/nn1005304
Blanchard, A., Gouanvé, F., & Espuche, E. (2017). Effect of humidity on mechanical, thermal and barrier properties of EVOH films. Journal of Membrane Science, 540, 1-9. doi:10.1016/j.memsci.2017.06.031
Cowie, J. M. G., Harris, S., & McEwen, I. J. (1998). Physical Aging in Poly(vinyl acetate). 2. Relative Rates of Volume and Enthalpy Relaxation. Macromolecules, 31(8), 2611-2615. doi:10.1021/ma970287t
Hutchinson, J. M., Smith, S., Horne, B., & Gourlay, G. M. (1999). Physical Aging of Polycarbonate: Enthalpy Relaxation, Creep Response, and Yielding Behavior. Macromolecules, 32(15), 5046-5061. doi:10.1021/ma981391t
Dhawan, S., Barbosa-Cànovas, G. V., Tang, J., & Sablani, S. S. (2011). Oxygen barrier and enthalpy of melting of multilayer EVOH films after pressure-assisted thermal processing and during storage. Journal of Applied Polymer Science, 122(3), 1538-1545. doi:10.1002/app.34267
Martínez-Felipe, A., Santonja-Blasco, L., Badia, J. D., Imrie, C. T., & Ribes-Greus, A. (2013). Characterization of Functionalized Side-Chain Liquid Crystal Methacrylates Containing Nonmesogenic Units by Dielectric Spectroscopy. Industrial & Engineering Chemistry Research, 52(26), 8722-8731. doi:10.1021/ie3031339
Badia, J. D., Reig-Rodrigo, P., Teruel-Juanes, R., Kittikorn, T., Strömberg, E., Ek, M., … Ribes-Greus, A. (2017). Effect of sisal and hydrothermal ageing on the dielectric behaviour of polylactide/sisal biocomposites. Composites Science and Technology, 149, 1-10. doi:10.1016/j.compscitech.2017.05.026
Salaberría, A. M., Teruel-Juanes, R., Badia, J. D., Fernandes, S. C. M., Sáenz de Juano-Arbona, V., Labidi, J., & Ribes-Greus, A. (2018). Influence of chitin nanocrystals on the dielectric behaviour and conductivity of chitosan-based bionanocomposites. Composites Science and Technology, 167, 323-330. doi:10.1016/j.compscitech.2018.08.019
Badia, J. D., Monreal, L., Sáenz de Juano-Arbona, V., & Ribes-Greus, A. (2014). Dielectric spectroscopy of recycled polylactide. Polymer Degradation and Stability, 107, 21-27. doi:10.1016/j.polymdegradstab.2014.04.023
Bizet, A., Nakamura, N., Teramoto, Y., & Hatakeyama, T. (1994). The influence of moisture on the dielectric properties of poly(ethylene-co-vinyl alcohol). Thermochimica Acta, 241, 191-198. doi:10.1016/0040-6031(94)87017-9
Torres-Giner, S., Chiva-Flor, A., & Feijoo, J. L. (2014). Injection-molded parts of polypropylene/multi-wall carbon nanotubes composites with an electrically conductive tridimensional network. Polymer Composites, 37(2), 488-496. doi:10.1002/pc.23204
Macdonald, J. R. (1992). Impedance spectroscopy. Annals of Biomedical Engineering, 20(3), 289-305. doi:10.1007/bf02368532
Pissis, P., & Kyritsis, A. (1997). Electrical conductivity studies in hydrogels. Solid State Ionics, 97(1-4), 105-113. doi:10.1016/s0167-2738(97)00074-x
Miyairi, K. (1986). Low-frequency dielectric response of polyethylene terephthalate (PET) films. Journal of Physics D: Applied Physics, 19(10), 1973-1980. doi:10.1088/0022-3727/19/10/023
Neagu, E., Pissis, P., & Apekis, L. (2000). Electrical conductivity effects in polyethylene terephthalate films. Journal of Applied Physics, 87(6), 2914-2922. doi:10.1063/1.372277
Yamamoto, K., & Namikawa, H. (1988). Conduction Current Relaxation of Inhomogeneous Conductor I. Japanese Journal of Applied Physics, 27(Part 1, No. 10), 1845-1851. doi:10.1143/jjap.27.1845
Lasprilla-Botero, J., Torres-Giner, S., Pardo-Figuerez, M., Álvarez-Láinez, M., & M. Lagaron, J. (2018). Superhydrophobic Bilayer Coating Based on Annealed Electrospun Ultrathin Poly(ε-caprolactone) Fibers and Electrosprayed Nanostructured Silica Microparticles for Easy Emptying Packaging Applications. Coatings, 8(5), 173. doi:10.3390/coatings8050173
Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115
Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038
[-]