- -

Electrospun Poly(ethylene-co-vinyl alcohol)/Graphene Nanoplatelets Composites of Interest in Intelligent Food Packaging Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electrospun Poly(ethylene-co-vinyl alcohol)/Graphene Nanoplatelets Composites of Interest in Intelligent Food Packaging Applications

Mostrar el registro completo del ítem

Torres-Giner, S.; Echegoyen, Y.; Teruel Juanes, R.; Badia, JD.; Ribes-Greus, A.; Lagaron Cabello, JM. (2018). Electrospun Poly(ethylene-co-vinyl alcohol)/Graphene Nanoplatelets Composites of Interest in Intelligent Food Packaging Applications. Nanomaterials. 8(10):1-19. https://doi.org/10.3390/nano8100745

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147424

Ficheros en el ítem

Metadatos del ítem

Título: Electrospun Poly(ethylene-co-vinyl alcohol)/Graphene Nanoplatelets Composites of Interest in Intelligent Food Packaging Applications
Autor: Torres-Giner, S. Echegoyen, Y. TERUEL JUANES, ROBERTO Badia, Jose D. Ribes-Greus, A. Lagaron Cabello, José María
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Fecha difusión:
Resumen:
[EN] Graphene nanoplatelets (GNPs) were synthetized from graphite powder and, thereafter, embedded in poly(ethylene-co-vinyl alcohol) (EVOH) fibers by electrospinning in the 0.1-2 wt.-% range. The morphological, chemical, ...[+]
Palabras clave: EVOH , Graphene , Electrospinning , Smart labels , Intelligent packaging
Derechos de uso: Reconocimiento (by)
Fuente:
Nanomaterials. (eissn: 2079-4991 )
DOI: 10.3390/nano8100745
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/nano8100745
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//UPOV13-3E-1947/ES/Cromatrografía por Exclusión de Tamaños/
...[+]
info:eu-repo/grantAgreement/MINECO//UPOV13-3E-1947/ES/Cromatrografía por Exclusión de Tamaños/
info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/
info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2012%2F003/
info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2014%2F041/
info:eu-repo/grantAgreement/MINECO//ENE2014-53734-C2-1-R/ES/DISEÑO Y VALIDACION DE MEMBRANAS CON CONTROL MORFOLOGICO PARA SU USO EN PILAS DE COMBUSTIBLE DE BAJA TEMPERATURA SOSTENIBLES EN VEHICULOS EFICIENTES NO TRIPULADOS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ENE2017-86711-C3-1-R/ES/SISTEMA INTEGRADO DE DESCARBONIZACION Y PRODUCCION DE ENERGIA BASADO EN PILAS DE COMBUSTIBLE DE METANOL DIRECTO PARA APLICACIONES NAVALES Y AEROESPACIALES/
[-]
Agradecimientos:
This research was funded by the European Regional Development Funds (ERDF) and Ministry of Science, Innovation, and Universities (MICIU) project numbers ENE2014-53734-C2-1-R, ENE2017-86711-C3-1-R, UPOV13-3E-1947, and ...[+]
Tipo: Artículo

References

Novoselov, K. S. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666-669. doi:10.1126/science.1102896

Zhu, N., Liu, W., Xue, M., Xie, Z., Zhao, D., Zhang, M., … Cao, T. (2010). Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries. Electrochimica Acta, 55(20), 5813-5818. doi:10.1016/j.electacta.2010.05.029

Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8(3), 902-907. doi:10.1021/nl0731872 [+]
Novoselov, K. S. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666-669. doi:10.1126/science.1102896

Zhu, N., Liu, W., Xue, M., Xie, Z., Zhao, D., Zhang, M., … Cao, T. (2010). Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries. Electrochimica Acta, 55(20), 5813-5818. doi:10.1016/j.electacta.2010.05.029

Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8(3), 902-907. doi:10.1021/nl0731872

Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi:10.1038/nature04969

Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274

Torres-Giner, S., & Lagaron, J. M. (2010). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. I. Morphology and thermal properties. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.32180

Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768

Cherpinski, A., Gozutok, M., Sasmazel, H., Torres-Giner, S., & Lagaron, J. (2018). Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials, 8(7), 469. doi:10.3390/nano8070469

Asmatulu, R., Ceylan, M., & Nuraje, N. (2011). Study of Superhydrophobic Electrospun Nanocomposite Fibers for Energy Systems. Langmuir, 27(2), 504-507. doi:10.1021/la103661c

Bao, Q., Zhang, H., Yang, J., Wang, S., Tang, D. Y., Jose, R., … Loh, K. P. (2010). Graphene-Polymer Nanofiber Membrane for Ultrafast Photonics. Advanced Functional Materials, 20(5), 782-791. doi:10.1002/adfm.200901658

Li, X., Yang, Y., Zhao, Y., Lou, J., Zhao, X., Wang, R., … Huang, Z. (2017). Electrospinning fabrication and in situ mechanical investigation of individual graphene nanoribbon reinforced carbon nanofiber. Carbon, 114, 717-723. doi:10.1016/j.carbon.2016.12.082

Moayeri, A., & Ajji, A. (2016). Core–Shell Structured Graphene Filled Polyaniline/Poly(methyl methacrylate) Nanofibers by Coaxial Electrospinning. Nanoscience and Nanotechnology Letters, 8(2), 129-134. doi:10.1166/nnl.2016.2067

Moayeri, A., & Ajji, A. (2017). High Capacitance Carbon Nanofibers from Poly(acrylonitrile) and Poly(vinylpyrrolidone)-Functionalized Graphene by Electrospinning. Journal of Nanoscience and Nanotechnology, 17(3), 1820-1829. doi:10.1166/jnn.2017.12877

HIRATA, M., GOTOU, T., HORIUCHI, S., FUJIWARA, M., & OHBA, M. (2004). Thin-film particles of graphite oxide 1:High-yield synthesis and flexibility of the particles. Carbon, 42(14), 2929-2937. doi:10.1016/s0008-6223(04)00444-0

Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034

Van Turnhout, J., & Wübbenhorst, M. (2002). Analysis of complex dielectric spectra. II: Evaluation of the activation energy landscape by differential sampling. Journal of Non-Crystalline Solids, 305(1-3), 50-58. doi:10.1016/s0022-3093(02)01120-1

Dyre, J. C. (1991). Some remarks on ac conduction in disordered solids. Journal of Non-Crystalline Solids, 135(2-3), 219-226. doi:10.1016/0022-3093(91)90423-4

Yasmin, A., & Daniel, I. M. (2004). Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer, 45(24), 8211-8219. doi:10.1016/j.polymer.2004.09.054

Simon, D. A., Bischoff, E., Buonocore, G. G., Cerruti, P., Raucci, M. G., Xia, H., … Mauler, R. S. (2017). Graphene-based masterbatch obtained via modified polyvinyl alcohol liquid-shear exfoliation and its application in enhanced polymer composites. Materials & Design, 134, 103-110. doi:10.1016/j.matdes.2017.08.032

Martínez-Sanz, M., Olsson, R. T., Lopez-Rubio, A., & Lagaron, J. M. (2010). Development of electrospun EVOH fibres reinforced with bacterial cellulose nanowhiskers. Part I: Characterization and method optimization. Cellulose, 18(2), 335-347. doi:10.1007/s10570-010-9471-1

Sukumaran, S. S., Rekha, C. R., Resmi, A. N., Jinesh, K. B., & Gopchandran, K. G. (2018). Raman and scanning tunneling spectroscopic investigations on graphene-silver nanocomposites. Journal of Science: Advanced Materials and Devices, 3(3), 353-358. doi:10.1016/j.jsamd.2018.06.003

Lotya, M., King, P. J., Khan, U., De, S., & Coleman, J. N. (2010). High-Concentration, Surfactant-Stabilized Graphene Dispersions. ACS Nano, 4(6), 3155-3162. doi:10.1021/nn1005304

Blanchard, A., Gouanvé, F., & Espuche, E. (2017). Effect of humidity on mechanical, thermal and barrier properties of EVOH films. Journal of Membrane Science, 540, 1-9. doi:10.1016/j.memsci.2017.06.031

Cowie, J. M. G., Harris, S., & McEwen, I. J. (1998). Physical Aging in Poly(vinyl acetate). 2. Relative Rates of Volume and Enthalpy Relaxation. Macromolecules, 31(8), 2611-2615. doi:10.1021/ma970287t

Hutchinson, J. M., Smith, S., Horne, B., & Gourlay, G. M. (1999). Physical Aging of Polycarbonate: Enthalpy Relaxation, Creep Response, and Yielding Behavior. Macromolecules, 32(15), 5046-5061. doi:10.1021/ma981391t

Dhawan, S., Barbosa-Cànovas, G. V., Tang, J., & Sablani, S. S. (2011). Oxygen barrier and enthalpy of melting of multilayer EVOH films after pressure-assisted thermal processing and during storage. Journal of Applied Polymer Science, 122(3), 1538-1545. doi:10.1002/app.34267

Martínez-Felipe, A., Santonja-Blasco, L., Badia, J. D., Imrie, C. T., & Ribes-Greus, A. (2013). Characterization of Functionalized Side-Chain Liquid Crystal Methacrylates Containing Nonmesogenic Units by Dielectric Spectroscopy. Industrial & Engineering Chemistry Research, 52(26), 8722-8731. doi:10.1021/ie3031339

Badia, J. D., Reig-Rodrigo, P., Teruel-Juanes, R., Kittikorn, T., Strömberg, E., Ek, M., … Ribes-Greus, A. (2017). Effect of sisal and hydrothermal ageing on the dielectric behaviour of polylactide/sisal biocomposites. Composites Science and Technology, 149, 1-10. doi:10.1016/j.compscitech.2017.05.026

Salaberría, A. M., Teruel-Juanes, R., Badia, J. D., Fernandes, S. C. M., Sáenz de Juano-Arbona, V., Labidi, J., & Ribes-Greus, A. (2018). Influence of chitin nanocrystals on the dielectric behaviour and conductivity of chitosan-based bionanocomposites. Composites Science and Technology, 167, 323-330. doi:10.1016/j.compscitech.2018.08.019

Badia, J. D., Monreal, L., Sáenz de Juano-Arbona, V., & Ribes-Greus, A. (2014). Dielectric spectroscopy of recycled polylactide. Polymer Degradation and Stability, 107, 21-27. doi:10.1016/j.polymdegradstab.2014.04.023

Bizet, A., Nakamura, N., Teramoto, Y., & Hatakeyama, T. (1994). The influence of moisture on the dielectric properties of poly(ethylene-co-vinyl alcohol). Thermochimica Acta, 241, 191-198. doi:10.1016/0040-6031(94)87017-9

Torres-Giner, S., Chiva-Flor, A., & Feijoo, J. L. (2014). Injection-molded parts of polypropylene/multi-wall carbon nanotubes composites with an electrically conductive tridimensional network. Polymer Composites, 37(2), 488-496. doi:10.1002/pc.23204

Macdonald, J. R. (1992). Impedance spectroscopy. Annals of Biomedical Engineering, 20(3), 289-305. doi:10.1007/bf02368532

Pissis, P., & Kyritsis, A. (1997). Electrical conductivity studies in hydrogels. Solid State Ionics, 97(1-4), 105-113. doi:10.1016/s0167-2738(97)00074-x

Miyairi, K. (1986). Low-frequency dielectric response of polyethylene terephthalate (PET) films. Journal of Physics D: Applied Physics, 19(10), 1973-1980. doi:10.1088/0022-3727/19/10/023

Neagu, E., Pissis, P., & Apekis, L. (2000). Electrical conductivity effects in polyethylene terephthalate films. Journal of Applied Physics, 87(6), 2914-2922. doi:10.1063/1.372277

Yamamoto, K., & Namikawa, H. (1988). Conduction Current Relaxation of Inhomogeneous Conductor I. Japanese Journal of Applied Physics, 27(Part 1, No. 10), 1845-1851. doi:10.1143/jjap.27.1845

Lasprilla-Botero, J., Torres-Giner, S., Pardo-Figuerez, M., Álvarez-Láinez, M., & M. Lagaron, J. (2018). Superhydrophobic Bilayer Coating Based on Annealed Electrospun Ultrathin Poly(ε-caprolactone) Fibers and Electrosprayed Nanostructured Silica Microparticles for Easy Emptying Packaging Applications. Coatings, 8(5), 173. doi:10.3390/coatings8050173

Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115

Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem