- -

Electrospun Poly(ethylene-co-vinyl alcohol)/Graphene Nanoplatelets Composites of Interest in Intelligent Food Packaging Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electrospun Poly(ethylene-co-vinyl alcohol)/Graphene Nanoplatelets Composites of Interest in Intelligent Food Packaging Applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torres-Giner, S. es_ES
dc.contributor.author Echegoyen, Y. es_ES
dc.contributor.author TERUEL JUANES, ROBERTO es_ES
dc.contributor.author Badia, Jose D. es_ES
dc.contributor.author Ribes-Greus, A. es_ES
dc.contributor.author Lagaron Cabello, José María es_ES
dc.date.accessioned 2020-07-04T03:31:56Z
dc.date.available 2020-07-04T03:31:56Z
dc.date.issued 2018-09-20 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147424
dc.description.abstract [EN] Graphene nanoplatelets (GNPs) were synthetized from graphite powder and, thereafter, embedded in poly(ethylene-co-vinyl alcohol) (EVOH) fibers by electrospinning in the 0.1-2 wt.-% range. The morphological, chemical, and thermal characterization performed on the electrospun nanocomposite fibers mats revealed that the GNPs were efficiently dispersed and rolled along the EVOH fibrilar matrix up to contents of 0.5 wt.-%. Additionally, the dielectric behavior of the nanocomposite fibers was evaluated as a function of the frequency range and GNPs content. The obtained results indicated that their dielectric constant rapidly decreased with the frequency increase and only increased at low GNPs loadings while the nanocomposite fiber mats became electrically conductive, with the maximum at 0.5 wt.-% GNPs content. Finally, the electrospun mats were subjected to a thermal post-treatment and dark films with a high contact transparency were obtained, suggesting that the nanocomposites can be used either in a nonwoven fibers form or in a continuous film form. This study demonstrates the potential of electrospinning as a promising technology to produce GNPs-containing materials with high electrical conductivity that can be of potential interest in intelligent packaging applications as "smart" labels or tags. es_ES
dc.description.sponsorship This research was funded by the European Regional Development Funds (ERDF) and Ministry of Science, Innovation, and Universities (MICIU) project numbers ENE2014-53734-C2-1-R, ENE2017-86711-C3-1-R, UPOV13-3E-1947, and AGL2015-63855-C2-1-R. S.T.-G. acknowledges the MICIU for his Juan de la Cierva contract (IJCI-2016-29675). J.D.B. and R.T.-J. also thank Generalitat Valenciana (GV) for their projects APOSTD14/041 and GRISOLIA/2012/003, respectively. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Nanomaterials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject EVOH es_ES
dc.subject Graphene es_ES
dc.subject Electrospinning es_ES
dc.subject Smart labels es_ES
dc.subject Intelligent packaging es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Electrospun Poly(ethylene-co-vinyl alcohol)/Graphene Nanoplatelets Composites of Interest in Intelligent Food Packaging Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/nano8100745 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//UPOV13-3E-1947/ES/Cromatrografía por Exclusión de Tamaños/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2012%2F003/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2014%2F041/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2014-53734-C2-1-R/ES/DISEÑO Y VALIDACION DE MEMBRANAS CON CONTROL MORFOLOGICO PARA SU USO EN PILAS DE COMBUSTIBLE DE BAJA TEMPERATURA SOSTENIBLES EN VEHICULOS EFICIENTES NO TRIPULADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ENE2017-86711-C3-1-R/ES/SISTEMA INTEGRADO DE DESCARBONIZACION Y PRODUCCION DE ENERGIA BASADO EN PILAS DE COMBUSTIBLE DE METANOL DIRECTO PARA APLICACIONES NAVALES Y AEROESPACIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Torres-Giner, S.; Echegoyen, Y.; Teruel Juanes, R.; Badia, JD.; Ribes-Greus, A.; Lagaron Cabello, JM. (2018). Electrospun Poly(ethylene-co-vinyl alcohol)/Graphene Nanoplatelets Composites of Interest in Intelligent Food Packaging Applications. Nanomaterials. 8(10):1-19. https://doi.org/10.3390/nano8100745 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/nano8100745 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2079-4991 es_ES
dc.identifier.pmid 30241290 es_ES
dc.identifier.pmcid PMC6215290 es_ES
dc.relation.pasarela S\379306 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Novoselov, K. S. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666-669. doi:10.1126/science.1102896 es_ES
dc.description.references Zhu, N., Liu, W., Xue, M., Xie, Z., Zhao, D., Zhang, M., … Cao, T. (2010). Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries. Electrochimica Acta, 55(20), 5813-5818. doi:10.1016/j.electacta.2010.05.029 es_ES
dc.description.references Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8(3), 902-907. doi:10.1021/nl0731872 es_ES
dc.description.references Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi:10.1038/nature04969 es_ES
dc.description.references Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274 es_ES
dc.description.references Torres-Giner, S., & Lagaron, J. M. (2010). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. I. Morphology and thermal properties. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.32180 es_ES
dc.description.references Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768 es_ES
dc.description.references Cherpinski, A., Gozutok, M., Sasmazel, H., Torres-Giner, S., & Lagaron, J. (2018). Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials, 8(7), 469. doi:10.3390/nano8070469 es_ES
dc.description.references Asmatulu, R., Ceylan, M., & Nuraje, N. (2011). Study of Superhydrophobic Electrospun Nanocomposite Fibers for Energy Systems. Langmuir, 27(2), 504-507. doi:10.1021/la103661c es_ES
dc.description.references Bao, Q., Zhang, H., Yang, J., Wang, S., Tang, D. Y., Jose, R., … Loh, K. P. (2010). Graphene-Polymer Nanofiber Membrane for Ultrafast Photonics. Advanced Functional Materials, 20(5), 782-791. doi:10.1002/adfm.200901658 es_ES
dc.description.references Li, X., Yang, Y., Zhao, Y., Lou, J., Zhao, X., Wang, R., … Huang, Z. (2017). Electrospinning fabrication and in situ mechanical investigation of individual graphene nanoribbon reinforced carbon nanofiber. Carbon, 114, 717-723. doi:10.1016/j.carbon.2016.12.082 es_ES
dc.description.references Moayeri, A., & Ajji, A. (2016). Core–Shell Structured Graphene Filled Polyaniline/Poly(methyl methacrylate) Nanofibers by Coaxial Electrospinning. Nanoscience and Nanotechnology Letters, 8(2), 129-134. doi:10.1166/nnl.2016.2067 es_ES
dc.description.references Moayeri, A., & Ajji, A. (2017). High Capacitance Carbon Nanofibers from Poly(acrylonitrile) and Poly(vinylpyrrolidone)-Functionalized Graphene by Electrospinning. Journal of Nanoscience and Nanotechnology, 17(3), 1820-1829. doi:10.1166/jnn.2017.12877 es_ES
dc.description.references HIRATA, M., GOTOU, T., HORIUCHI, S., FUJIWARA, M., & OHBA, M. (2004). Thin-film particles of graphite oxide 1:High-yield synthesis and flexibility of the particles. Carbon, 42(14), 2929-2937. doi:10.1016/s0008-6223(04)00444-0 es_ES
dc.description.references Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034 es_ES
dc.description.references Van Turnhout, J., & Wübbenhorst, M. (2002). Analysis of complex dielectric spectra. II: Evaluation of the activation energy landscape by differential sampling. Journal of Non-Crystalline Solids, 305(1-3), 50-58. doi:10.1016/s0022-3093(02)01120-1 es_ES
dc.description.references Dyre, J. C. (1991). Some remarks on ac conduction in disordered solids. Journal of Non-Crystalline Solids, 135(2-3), 219-226. doi:10.1016/0022-3093(91)90423-4 es_ES
dc.description.references Yasmin, A., & Daniel, I. M. (2004). Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer, 45(24), 8211-8219. doi:10.1016/j.polymer.2004.09.054 es_ES
dc.description.references Simon, D. A., Bischoff, E., Buonocore, G. G., Cerruti, P., Raucci, M. G., Xia, H., … Mauler, R. S. (2017). Graphene-based masterbatch obtained via modified polyvinyl alcohol liquid-shear exfoliation and its application in enhanced polymer composites. Materials & Design, 134, 103-110. doi:10.1016/j.matdes.2017.08.032 es_ES
dc.description.references Martínez-Sanz, M., Olsson, R. T., Lopez-Rubio, A., & Lagaron, J. M. (2010). Development of electrospun EVOH fibres reinforced with bacterial cellulose nanowhiskers. Part I: Characterization and method optimization. Cellulose, 18(2), 335-347. doi:10.1007/s10570-010-9471-1 es_ES
dc.description.references Sukumaran, S. S., Rekha, C. R., Resmi, A. N., Jinesh, K. B., & Gopchandran, K. G. (2018). Raman and scanning tunneling spectroscopic investigations on graphene-silver nanocomposites. Journal of Science: Advanced Materials and Devices, 3(3), 353-358. doi:10.1016/j.jsamd.2018.06.003 es_ES
dc.description.references Lotya, M., King, P. J., Khan, U., De, S., & Coleman, J. N. (2010). High-Concentration, Surfactant-Stabilized Graphene Dispersions. ACS Nano, 4(6), 3155-3162. doi:10.1021/nn1005304 es_ES
dc.description.references Blanchard, A., Gouanvé, F., & Espuche, E. (2017). Effect of humidity on mechanical, thermal and barrier properties of EVOH films. Journal of Membrane Science, 540, 1-9. doi:10.1016/j.memsci.2017.06.031 es_ES
dc.description.references Cowie, J. M. G., Harris, S., & McEwen, I. J. (1998). Physical Aging in Poly(vinyl acetate). 2. Relative Rates of Volume and Enthalpy Relaxation. Macromolecules, 31(8), 2611-2615. doi:10.1021/ma970287t es_ES
dc.description.references Hutchinson, J. M., Smith, S., Horne, B., & Gourlay, G. M. (1999). Physical Aging of Polycarbonate: Enthalpy Relaxation, Creep Response, and Yielding Behavior. Macromolecules, 32(15), 5046-5061. doi:10.1021/ma981391t es_ES
dc.description.references Dhawan, S., Barbosa-Cànovas, G. V., Tang, J., & Sablani, S. S. (2011). Oxygen barrier and enthalpy of melting of multilayer EVOH films after pressure-assisted thermal processing and during storage. Journal of Applied Polymer Science, 122(3), 1538-1545. doi:10.1002/app.34267 es_ES
dc.description.references Martínez-Felipe, A., Santonja-Blasco, L., Badia, J. D., Imrie, C. T., & Ribes-Greus, A. (2013). Characterization of Functionalized Side-Chain Liquid Crystal Methacrylates Containing Nonmesogenic Units by Dielectric Spectroscopy. Industrial & Engineering Chemistry Research, 52(26), 8722-8731. doi:10.1021/ie3031339 es_ES
dc.description.references Badia, J. D., Reig-Rodrigo, P., Teruel-Juanes, R., Kittikorn, T., Strömberg, E., Ek, M., … Ribes-Greus, A. (2017). Effect of sisal and hydrothermal ageing on the dielectric behaviour of polylactide/sisal biocomposites. Composites Science and Technology, 149, 1-10. doi:10.1016/j.compscitech.2017.05.026 es_ES
dc.description.references Salaberría, A. M., Teruel-Juanes, R., Badia, J. D., Fernandes, S. C. M., Sáenz de Juano-Arbona, V., Labidi, J., & Ribes-Greus, A. (2018). Influence of chitin nanocrystals on the dielectric behaviour and conductivity of chitosan-based bionanocomposites. Composites Science and Technology, 167, 323-330. doi:10.1016/j.compscitech.2018.08.019 es_ES
dc.description.references Badia, J. D., Monreal, L., Sáenz de Juano-Arbona, V., & Ribes-Greus, A. (2014). Dielectric spectroscopy of recycled polylactide. Polymer Degradation and Stability, 107, 21-27. doi:10.1016/j.polymdegradstab.2014.04.023 es_ES
dc.description.references Bizet, A., Nakamura, N., Teramoto, Y., & Hatakeyama, T. (1994). The influence of moisture on the dielectric properties of poly(ethylene-co-vinyl alcohol). Thermochimica Acta, 241, 191-198. doi:10.1016/0040-6031(94)87017-9 es_ES
dc.description.references Torres-Giner, S., Chiva-Flor, A., & Feijoo, J. L. (2014). Injection-molded parts of polypropylene/multi-wall carbon nanotubes composites with an electrically conductive tridimensional network. Polymer Composites, 37(2), 488-496. doi:10.1002/pc.23204 es_ES
dc.description.references Macdonald, J. R. (1992). Impedance spectroscopy. Annals of Biomedical Engineering, 20(3), 289-305. doi:10.1007/bf02368532 es_ES
dc.description.references Pissis, P., & Kyritsis, A. (1997). Electrical conductivity studies in hydrogels. Solid State Ionics, 97(1-4), 105-113. doi:10.1016/s0167-2738(97)00074-x es_ES
dc.description.references Miyairi, K. (1986). Low-frequency dielectric response of polyethylene terephthalate (PET) films. Journal of Physics D: Applied Physics, 19(10), 1973-1980. doi:10.1088/0022-3727/19/10/023 es_ES
dc.description.references Neagu, E., Pissis, P., & Apekis, L. (2000). Electrical conductivity effects in polyethylene terephthalate films. Journal of Applied Physics, 87(6), 2914-2922. doi:10.1063/1.372277 es_ES
dc.description.references Yamamoto, K., & Namikawa, H. (1988). Conduction Current Relaxation of Inhomogeneous Conductor I. Japanese Journal of Applied Physics, 27(Part 1, No. 10), 1845-1851. doi:10.1143/jjap.27.1845 es_ES
dc.description.references Lasprilla-Botero, J., Torres-Giner, S., Pardo-Figuerez, M., Álvarez-Láinez, M., & M. Lagaron, J. (2018). Superhydrophobic Bilayer Coating Based on Annealed Electrospun Ultrathin Poly(ε-caprolactone) Fibers and Electrosprayed Nanostructured Silica Microparticles for Easy Emptying Packaging Applications. Coatings, 8(5), 173. doi:10.3390/coatings8050173 es_ES
dc.description.references Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115 es_ES
dc.description.references Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem