- -

Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor

Show full item record

Andrés-Colás, N.; Carrió-Seguí, Á.; Abdel-Ghany, SE.; Pilon, M.; Peñarrubia, L. (2018). Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor. Frontiers in Plant Science. 9. https://doi.org/10.3389/fpls.2018.00910

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147426

Files in this item

Item Metadata

Title: Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor
Author: Andrés-Colás, Nuria Carrió-Seguí, Ángela Abdel-Ghany, Salah E. Pilon, Marinus Peñarrubia, Lola
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
[EN] Copper is an essential element in plants. When scarce, copper is acquired from extracellular environment or remobilized from intracellular sites, through members of the high affinity copper transporters family COPT ...[+]
Subjects: Copper transport , COPT3 , Heavy metals , TCP16 , Transcriptional regulation
Copyrigths: Reconocimiento (by)
Frontiers in Plant Science. (eissn: 1664-462X )
DOI: 10.3389/fpls.2018.00910
Frontiers Media SA
Publisher version: https://doi.org/10.3389/fpls.2018.00910
Project ID:
Ministerio de Ciencia e Innovación/CSD2007-00057
This work has been supported by grants BIO2017-87828-C2-1-P (LP) and the TRANSPLANTA Consortium (CSD2007-00057) from the Spanish Ministry of Economy and Competitiveness, and by FEDER funds from the European Union. NA-C and ...[+]
Type: Artículo


Abdel-Ghany, S. E., Müller-Moulé, P., Niyogi, K. K., Pilon, M., & Shikanai, T. (2005). Two P-Type ATPases Are Required for Copper Delivery in Arabidopsis thaliana Chloroplasts. The Plant Cell, 17(4), 1233-1251. doi:10.1105/tpc.104.030452

Almeida, D. M., Gregorio, G. B., Oliveira, M. M., & Saibo, N. J. M. (2016). Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype. Plant Molecular Biology, 93(1-2), 61-77. doi:10.1007/s11103-016-0547-7

à lvarez-Fernández, A., Díaz-Benito, P., Abadía, A., López-Millán, A.-F., & Abadía, J. (2014). Metal species involved in long distance metal transport in plants. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00105 [+]
Abdel-Ghany, S. E., Müller-Moulé, P., Niyogi, K. K., Pilon, M., & Shikanai, T. (2005). Two P-Type ATPases Are Required for Copper Delivery in Arabidopsis thaliana Chloroplasts. The Plant Cell, 17(4), 1233-1251. doi:10.1105/tpc.104.030452

Almeida, D. M., Gregorio, G. B., Oliveira, M. M., & Saibo, N. J. M. (2016). Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype. Plant Molecular Biology, 93(1-2), 61-77. doi:10.1007/s11103-016-0547-7

à lvarez-Fernández, A., Díaz-Benito, P., Abadía, A., López-Millán, A.-F., & Abadía, J. (2014). Metal species involved in long distance metal transport in plants. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00105

Andrés-Colás, N., Perea-García, A., Mayo de Andrés, S., Garcia-Molina, A., Dorcey, E., Rodríguez-Navarro, S., … Peñarrubia, L. (2013). Comparison of global responses to mild deficiency and excess copper levels in Arabidopsis seedlings. Metallomics, 5(9), 1234. doi:10.1039/c3mt00025g

Andrés-Colás, N., Perea-García, A., Puig, S., & Peñarrubia, L. (2010). Deregulated Copper Transport Affects Arabidopsis Development Especially in the Absence of Environmental Cycles. Plant Physiology, 153(1), 170-184. doi:10.1104/pp.110.153676

Andrés-Colás, N., Sancenón, V., Rodríguez-Navarro, S., Mayo, S., Thiele, D. J., Ecker, J. R., … Peñarrubia, L. (2006). The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. The Plant Journal, 45(2), 225-236. doi:10.1111/j.1365-313x.2005.02601.x

Andriankaja, M. E., Danisman, S., Mignolet-Spruyt, L. F., Claeys, H., Kochanke, I., Vermeersch, M., … Inzé, D. (2014). Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors. Plant Molecular Biology, 85(3), 233-245. doi:10.1007/s11103-014-0180-2

Atamian, H. S., & Harmer, S. L. (2016). Circadian regulation of hormone signaling and plant physiology. Plant Molecular Biology, 91(6), 691-702. doi:10.1007/s11103-016-0477-4

Balsemão-Pires, E., Andrade, L. R., & Sachetto-Martins, G. (2013). Functional study of TCP23 in Arabidopsis thaliana during plant development. Plant Physiology and Biochemistry, 67, 120-125. doi:10.1016/j.plaphy.2013.03.009

Bar-Peled, M., & Raikhel, N. V. (1997). Characterization of AtSEC12 and AtSAR1 (Proteins Likely Involved in Endoplasmic Reticulum and Golgi Transport). Plant Physiology, 114(1), 315-324. doi:10.1104/pp.114.1.315

Bate, N., & Twell, D. (1998). Plant Molecular Biology, 37(5), 859-869. doi:10.1023/a:1006095023050

Bemer, M., van Dijk, A. D. J., Immink, R. G. H., & Angenent, G. C. (2017). Cross-Family Transcription Factor Interactions: An Additional Layer of Gene Regulation. Trends in Plant Science, 22(1), 66-80. doi:10.1016/j.tplants.2016.10.007

Bernal, M., Casero, D., Singh, V., Wilson, G. T., Grande, A., Yang, H., … Krämer, U. (2012). Transcriptome Sequencing Identifies SPL7-Regulated Copper Acquisition Genes FRO4/FRO5 and the Copper Dependence of Iron Homeostasis in Arabidopsis. The Plant Cell, 24(2), 738-761. doi:10.1105/tpc.111.090431

Blaby-Haas, C. E., & Merchant, S. S. (2014). Lysosome-related Organelles as Mediators of Metal Homeostasis. Journal of Biological Chemistry, 289(41), 28129-28136. doi:10.1074/jbc.r114.592618

Bock, K. W., Honys, D., Ward, J. M., Padmanaban, S., Nawrocki, E. P., Hirschi, K. D., … Sze, H. (2006). Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics. Plant Physiology, 140(4), 1151-1168. doi:10.1104/pp.105.074708

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3

Brancaccio, D., Gallo, A., Piccioli, M., Novellino, E., Ciofi-Baffoni, S., & Banci, L. (2017). [4Fe-4S] Cluster Assembly in Mitochondria and Its Impairment by Copper. Journal of the American Chemical Society, 139(2), 719-730. doi:10.1021/jacs.6b09567

Bruinsma, J. (1961). A comment on the spectrophotometric determination of chlorophyll. Biochimica et Biophysica Acta, 52(3), 576-578. doi:10.1016/0006-3002(61)90418-8

Carrió-Seguí, A., Garcia-Molina, A., Sanz, A., & Peñarrubia, L. (2014). Defective Copper Transport in the copt5 Mutant Affects Cadmium Tolerance. Plant and Cell Physiology, 56(3), 442-454. doi:10.1093/pcp/pcu180

Chen, Y.-Y., Wang, Y., Shin, L.-J., Wu, J.-F., Shanmugam, V., Tsednee, M., … Yeh, K.-C. (2013). Iron Is Involved in the Maintenance of Circadian Period Length in Arabidopsis. Plant Physiology, 161(3), 1409-1420. doi:10.1104/pp.112.212068

Coego, A., Brizuela, E., Castillejo, P., Ruíz, S., Koncz, C., … del Pozo, J. C. (2014). The TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. The Plant Journal, 77(6), 944-953. doi:10.1111/tpj.12443

Cubas, P., Lauter, N., Doebley, J., & Coen, E. (1999). The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal, 18(2), 215-222. doi:10.1046/j.1365-313x.1999.00444.x

Danisman, S. (2016). TCP Transcription Factors at the Interface between Environmental Challenges and the Plant’s Growth Responses. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01930

Dhadi, S. R., Krom, N., & Ramakrishna, W. (2009). Genome-wide comparative analysis of putative bidirectional promoters from rice, Arabidopsis and Populus. Gene, 429(1-2), 65-73. doi:10.1016/j.gene.2008.09.034

Dhaka, N., Bhardwaj, V., Sharma, M. K., & Sharma, R. (2017). Evolving Tale of TCPs: New Paradigms and Old Lacunae. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00479

Franco-Zorrilla, J. M., López-Vidriero, I., Carrasco, J. L., Godoy, M., Vera, P., & Solano, R. (2014). DNA-binding specificities of plant transcription factors and their potential to define target genes. Proceedings of the National Academy of Sciences, 111(6), 2367-2372. doi:10.1073/pnas.1316278111

Garcia-Molina, A., Andrés-Colás, N., Perea-García, A., del Valle-Tascón, S., Peñarrubia, L., & Puig, S. (2011). The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency. The Plant Journal, 65(6), 848-860. doi:10.1111/j.1365-313x.2010.04472.x

Garcia-Molina, A., Andrés-Colás, N., Perea-García, A., Neumann, U., Dodani, S. C., Huijser, P., … Puig, S. (2013). The Arabidopsis COPT6 Transport Protein Functions in Copper Distribution Under Copper-Deficient Conditions. Plant and Cell Physiology, 54(8), 1378-1390. doi:10.1093/pcp/pct088

Garcia-Molina, A., Xing, S., & Huijser, P. (2014). Functional characterisation of Arabidopsis SPL7 conserved protein domains suggests novel regulatory mechanisms in the Cu deficiency response. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0231-5

Giraud, E., Ng, S., Carrie, C., Duncan, O., Low, J., Lee, C. P., … Whelan, J. (2010). TCP Transcription Factors Link the Regulation of Genes Encoding Mitochondrial Proteins with the Circadian Clock in Arabidopsis thaliana. The Plant Cell, 22(12), 3921-3934. doi:10.1105/tpc.110.074518

Guan, P., Ripoll, J.-J., Wang, R., Vuong, L., Bailey-Steinitz, L. J., Ye, D., & Crawford, N. M. (2017). Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proceedings of the National Academy of Sciences, 114(9), 2419-2424. doi:10.1073/pnas.1615676114

Guan, P., Wang, R., Nacry, P., Breton, G., Kay, S. A., Pruneda-Paz, J. L., … Crawford, N. M. (2014). Nitrate foraging byArabidopsisroots is mediated by the transcription factor TCP20 through the systemic signaling pathway. Proceedings of the National Academy of Sciences, 111(42), 15267-15272. doi:10.1073/pnas.1411375111

Harmer, S. L., Hogenesch, J. B., Straume, M., Chang, H.-S., Han, B., Zhu, T., … Kay, S. A. (2000). Orchestrated Transcription of Key Pathways in Arabidopsis by the Circadian Clock. Science, 290(5499), 2110-2113. doi:10.1126/science.290.5499.2110

Hermans, C., Vuylsteke, M., Coppens, F., Craciun, A., Inzé, D., & Verbruggen, N. (2010). Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid-responsive genes. New Phytologist, 187(1), 119-131. doi:10.1111/j.1469-8137.2010.03258.x

Hirayama, T., Kieber, J. J., Hirayama, N., Kogan, M., Guzman, P., Nourizadeh, S., … Ecker, J. R. (1999). RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson Disease–Related Copper Transporter, Is Required for Ethylene Signaling in Arabidopsis. Cell, 97(3), 383-393. doi:10.1016/s0092-8674(00)80747-3

Hong, S., Kim, S. A., Guerinot, M. L., & McClung, C. R. (2012). Reciprocal Interaction of the Circadian Clock with the Iron Homeostasis Network in Arabidopsis. Plant Physiology, 161(2), 893-903. doi:10.1104/pp.112.208603

Hong-Hermesdorf, A., Miethke, M., Gallaher, S. D., Kropat, J., Dodani, S. C., Chan, J., … Merchant, S. S. (2014). Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas. Nature Chemical Biology, 10(12), 1034-1042. doi:10.1038/nchembio.1662

Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. doi:10.1002/j.1460-2075.1987.tb02730.x

Kushnir, S. (1995). Molecular Characterization of a Putative Arabidopsis thaliana Copper Transporter and Its Yeast Homologue. Journal of Biological Chemistry, 270(47), 28479-28486. doi:10.1074/jbc.270.47.28479

Kieffer, M., Master, V., Waites, R., & Davies, B. (2011). TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. The Plant Journal, 68(1), 147-158. doi:10.1111/j.1365-313x.2011.04674.x

Kim, H., Wu, X., & Lee, J. (2013). SLC31 (CTR) family of copper transporters in health and disease. Molecular Aspects of Medicine, 34(2-3), 561-570. doi:10.1016/j.mam.2012.07.011

Klaumann, S., Nickolaus, S. D., Fürst, S. H., Starck, S., Schneider, S., Ekkehard Neuhaus, H., & Trentmann, O. (2011). The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. New Phytologist, 192(2), 393-404. doi:10.1111/j.1469-8137.2011.03798.x

Kosugi, S., & Ohashi, Y. (2002). DNA binding and dimerization specificity and potential targets for the TCP protein family. The Plant Journal, 30(3), 337-348. doi:10.1046/j.1365-313x.2002.01294.x

Krom, N., & Ramakrishna, W. (2008). Comparative Analysis of Divergent and Convergent Gene Pairs and Their Expression Patterns in Rice, Arabidopsis, and Populus. Plant Physiology, 147(4), 1763-1773. doi:10.1104/pp.108.122416

Li, S. (2015). The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development. Plant Signaling & Behavior, 10(7), e1044192. doi:10.1080/15592324.2015.1044192

Martín-Trillo, M., & Cubas, P. (2010). TCP genes: a family snapshot ten years later. Trends in Plant Science, 15(1), 31-39. doi:10.1016/j.tplants.2009.11.003

Mitra, A., Han, J., Zhang, Z. J., & Mitra, A. (2009). The intergenic region of Arabidopsis thaliana cab1 and cab2 divergent genes functions as a bidirectional promoter. Planta, 229(5), 1015-1022. doi:10.1007/s00425-008-0859-1

Mockler, T. C., Michael, T. P., Priest, H. D., Shen, R., Sullivan, C. M., Givan, S. A., … Chory, J. (2007). The Diurnal Project: Diurnal and Circadian Expression Profiling, Model-based Pattern Matching, and Promoter Analysis. Cold Spring Harbor Symposia on Quantitative Biology, 72(1), 353-363. doi:10.1101/sqb.2007.72.006

Mukhopadhyay, P., & Tyagi, A. K. (2015). OsTCP19 influences developmental and abiotic stress signaling by modulatingABI4-mediated pathways. Scientific Reports, 5(1). doi:10.1038/srep09998

Nicolas, M., & Cubas, P. (2016). TCP factors: new kids on the signaling block. Current Opinion in Plant Biology, 33, 33-41. doi:10.1016/j.pbi.2016.05.006

Nohales, M. A., & Kay, S. A. (2016). Molecular mechanisms at the core of the plant circadian oscillator. Nature Structural & Molecular Biology, 23(12), 1061-1069. doi:10.1038/nsmb.3327

Palatnik, J. F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J. C., & Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature, 425(6955), 257-263. doi:10.1038/nature01958

Peñarrubia, L., Andrés-Colás, N., Moreno, J., & Puig, S. (2009). Regulation of copper transport in Arabidopsis thaliana: a biochemical oscillator? JBIC Journal of Biological Inorganic Chemistry, 15(1), 29-36. doi:10.1007/s00775-009-0591-8

Peñarrubia, L., Romero, P., Carrió-Seguí, A., Andrés-Bordería, A., Moreno, J., & Sanz, A. (2015). Temporal aspects of copper homeostasis and its crosstalk with hormones. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00255

Perea-García, A., Andrés-Bordería, A., Mayo de Andrés, S., Sanz, A., Davis, A. M., Davis, S. J., … Peñarrubia, L. (2015). Modulation of copper deficiency responses by diurnal and circadian rhythms inArabidopsis thaliana. Journal of Experimental Botany, 67(1), 391-403. doi:10.1093/jxb/erv474

Perea-García, A., Garcia-Molina, A., Andrés-Colás, N., Vera-Sirera, F., Pérez-Amador, M. A., Puig, S., & Peñarrubia, L. (2013). Arabidopsis Copper Transport Protein COPT2 Participates in the Cross Talk between Iron Deficiency Responses and Low-Phosphate Signaling. Plant Physiology, 162(1), 180-194. doi:10.1104/pp.112.212407

Perea-García, A., Sanz, A., Moreno, J., Andrés-Bordería, A., de Andrés, S. M., Davis, A. M., … Peñarrubia, L. (2016). Daily rhythmicity of high affinity copper transport. Plant Signaling & Behavior, 11(3), e1140291. doi:10.1080/15592324.2016.1140291

Pilon-Smits, E. A. H. (2002). Characterization of a NifS-Like Chloroplast Protein from Arabidopsis. Implications for Its Role in Sulfur and Selenium Metabolism. PLANT PHYSIOLOGY, 130(3), 1309-1318. doi:10.1104/pp.102.010280

Pruneda-Paz, J. L., Breton, G., Para, A., & Kay, S. A. (2009). A Functional Genomics Approach Reveals CHE as a Component of the Arabidopsis Circadian Clock. Science, 323(5920), 1481-1485. doi:10.1126/science.1167206

Puig, S. (2014). Function and Regulation of the Plant COPT Family of High-Affinity Copper Transport Proteins. Advances in Botany, 2014, 1-9. doi:10.1155/2014/476917

Rae, T. D. (1999). Undetectable Intracellular Free Copper: The Requirement of a Copper Chaperone for Superoxide Dismutase. Science, 284(5415), 805-808. doi:10.1126/science.284.5415.805

Ravet, K., & Pilon, M. (2013). Copper and Iron Homeostasis in Plants: The Challenges of Oxidative Stress. Antioxidants & Redox Signaling, 19(9), 919-932. doi:10.1089/ars.2012.5084

Rawat, R., Xu, Z.-F., Yao, K.-M., & Chye, M.-L. (2005). Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase. Plant Molecular Biology, 57(5), 629-643. doi:10.1007/s11103-005-0954-7

RODRIGO-MORENO, A., ANDRÉS-COLÁS, N., POSCHENRIEDER, C., GUNSÉ, B., PEÑARRUBIA, L., & SHABALA, S. (2012). Calcium- and potassium-permeable plasma membrane transporters are activated by copper inArabidopsisroot tips: linking copper transport with cytosolic hydroxyl radical production. Plant, Cell & Environment, 36(4), 844-855. doi:10.1111/pce.12020

Rogers, H. J., Bate, N., Combe, J., Sullivan, J., Sweetman, J., Swan, C., … Twell, D. (2001). Plant Molecular Biology, 45(5), 577-585. doi:10.1023/a:1010695226241

Rubio-Somoza, I., Zhou, C.-M., Confraria, A., Martinho, C., von Born, P., Baena-Gonzalez, E., … Weigel, D. (2014). Temporal Control of Leaf Complexity by miRNA-Regulated Licensing of Protein Complexes. Current Biology, 24(22), 2714-2719. doi:10.1016/j.cub.2014.09.058

Salomé, P. A., Oliva, M., Weigel, D., & Krämer, U. (2012). Circadian clock adjustment to plant iron status depends on chloroplast and phytochrome function. The EMBO Journal, 32(4), 511-523. doi:10.1038/emboj.2012.330

Sancenón, V., Puig, S., Mateu-Andrés, I., Dorcey, E., Thiele, D. J., & Peñarrubia, L. (2004). TheArabidopsisCopper Transporter COPT1 Functions in Root Elongation and Pollen Development. Journal of Biological Chemistry, 279(15), 15348-15355. doi:10.1074/jbc.m313321200

Sancenón, V., Puig, S., Mira, H., Thiele, D. J., & Peñarrubia, L. (2003). Plant Molecular Biology, 51(4), 577-587. doi:10.1023/a:1022345507112

Seila, A. C., Calabrese, J. M., Levine, S. S., Yeo, G. W., Rahl, P. B., Flynn, R. A., … Sharp, P. A. (2008). Divergent Transcription from Active Promoters. Science, 322(5909), 1849-1851. doi:10.1126/science.1162253

Takeda, T., Amano, K., Ohto, M., Nakamura, K., Sato, S., Kato, T., … Ueguchi, C. (2006). RNA Interference of the Arabidopsis Putative Transcription Factor TCP16 Gene Results in Abortion of Early Pollen Development. Plant Molecular Biology, 61(1-2), 165-177. doi:10.1007/s11103-006-6265-9

Terzaghi, W. B., & Cashmore, A. R. (1995). Photomorphenesis: Seeing the light in plant development. Current Biology, 5(5), 466-468. doi:10.1016/s0960-9822(95)00092-3

Uberti-Manassero, N. G., Coscueta, E. R., & Gonzalez, D. H. (2016). Expression of a repressor form of the Arabidopsis thaliana transcription factor TCP16 induces the formation of ectopic meristems. Plant Physiology and Biochemistry, 108, 57-62. doi:10.1016/j.plaphy.2016.06.031

Viola, I. L., Camoirano, A., & Gonzalez, D. H. (2015). Redox-Dependent Modulation of Anthocyanin Biosynthesis by the TCP Transcription Factor TCP15 during Exposure to High Light Intensity Conditions in Arabidopsis. Plant Physiology, 170(1), 74-85. doi:10.1104/pp.15.01016

Viola, I. L., Guttlein, L. N., & Gonzalez, D. H. (2013). Redox Modulation of Plant Developmental Regulators from the Class I TCP Transcription Factor Family. PLANT PHYSIOLOGY, 162(3), 1434-1447. doi:10.1104/pp.113.216416

Viola, I. L., Reinheimer, R., Ripoll, R., Manassero, N. G. U., & Gonzalez, D. H. (2011). Determinants of the DNA Binding Specificity of Class I and Class II TCP Transcription Factors. Journal of Biological Chemistry, 287(1), 347-356. doi:10.1074/jbc.m111.256271

Wakano, C., Byun, J. S., Di, L.-J., & Gardner, K. (2012). The dual lives of bidirectional promoters. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1819(7), 688-693. doi:10.1016/j.bbagrm.2012.02.006

Wang, H., Mao, Y., Yang, J., & He, Y. (2015). TCP24 modulates secondary cell wall thickening and anther endothecium development. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00436

Wang, H.-Y., Klatte, M., Jakoby, M., Bäumlein, H., Weisshaar, B., & Bauer, P. (2007). Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta, 226(4), 897-908. doi:10.1007/s00425-007-0535-x

Wang, S., Sun, X., Hoshino, Y., Yu, Y., Jia, B., Sun, Z., … Zhu, Y. (2014). MicroRNA319 Positively Regulates Cold Tolerance by Targeting OsPCF6 and OsTCP21 in Rice (Oryza sativa L.). PLoS ONE, 9(3), e91357. doi:10.1371/journal.pone.0091357

Weiss, D., & Ori, N. (2007). Mechanisms of Cross Talk between Gibberellin and Other Hormones. Plant Physiology, 144(3), 1240-1246. doi:10.1104/pp.107.100370

Welchen, E., & Gonzalez, D. H. (2006). Overrepresentation of Elements Recognized by TCP-Domain Transcription Factors in the Upstream Regions of Nuclear Genes Encoding Components of the Mitochondrial Oxidative Phosphorylation Machinery. Plant Physiology, 141(2), 540-545. doi:10.1104/pp.105.075366

Wu, J.-F., Tsai, H.-L., Joanito, I., Wu, Y.-C., Chang, C.-W., Li, Y.-H., … Wu, S.-H. (2016). LWD–TCP complex activates the morning gene CCA1 in Arabidopsis. Nature Communications, 7(1). doi:10.1038/ncomms13181

Yamasaki, H., Hayashi, M., Fukazawa, M., Kobayashi, Y., & Shikanai, T. (2009). SQUAMOSA Promoter Binding Protein–Like7 Is a Central Regulator for Copper Homeostasis in Arabidopsis. The Plant Cell, 21(1), 347-361. doi:10.1105/tpc.108.060137

Yan, J., Chia, J.-C., Sheng, H., Jung, H., Zavodna, T.-O., Zhang, L., … Vatamaniuk, O. K. (2017). Arabidopsis Pollen Fertility Requires the Transcription Factors CITF1 and SPL7 That Regulate Copper Delivery to Anthers and Jasmonic Acid Synthesis. The Plant Cell, 29(12), 3012-3029. doi:10.1105/tpc.17.00363

Zhang, H., Zhao, X., Li, J., Cai, H., Deng, X. W., & Li, L. (2014). MicroRNA408 Is Critical for the HY5-SPL7 Gene Network That Mediates the Coordinated Response to Light and Copper. The Plant Cell, 26(12), 4933-4953. doi:10.1105/tpc.114.127340

Zuo, J., Niu, Q.-W., & Chua, N.-H. (2000). An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. The Plant Journal, 24(2), 265-273. doi:10.1046/j.1365-313x.2000.00868.x




This item appears in the following Collection(s)

Show full item record