- -

Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Andrés-Colás, Nuria es_ES
dc.contributor.author Carrió-Seguí, Ángela es_ES
dc.contributor.author Abdel-Ghany, Salah E. es_ES
dc.contributor.author Pilon, Marinus es_ES
dc.contributor.author Peñarrubia, Lola es_ES
dc.date.accessioned 2020-07-04T03:32:00Z
dc.date.available 2020-07-04T03:32:00Z
dc.date.issued 2018-07-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147426
dc.description.abstract [EN] Copper is an essential element in plants. When scarce, copper is acquired from extracellular environment or remobilized from intracellular sites, through members of the high affinity copper transporters family COPT located at the plasma membrane and internal membrane, respectively. Here, we show that COPT3 is an intracellular copper transporter, located at a compartment of the secretory pathway, that is mainly expressed in pollen grains and vascular bundles. Contrary to the COPT1 plasma membrane member, the expression of the internal COPT3 membrane transporter was higher at 12 h than at 0 h of a neutral photoperiod day under copper deficiency. The screening of a library of conditionally overexpressed transcription factors implicated members of the TCP family in the COPT3 differential temporal expression pattern. Particularly, in vitro, TCP16 was found to bind to the COPT3 promoter and down-regulated its expression. Accordingly, TCP16 was mainly expressed at 0 h under copper deficiency and induced at 12 h by copper excess. Moreover, TCP16 overexpression resulted in increased sensitivity to copper deficiency, whereas the tcp16 mutant was sensitive to copper excess. Both copper content and the expression of particular copper status markers were altered in plants with modified levels of TCP16. Consistent with TCP16 affecting pollen development, the lack of COPT3 function led to altered pollen morphology. Furthermore, analysis of copt3 and COPT3 overexpressing plants revealed that COPT3 function exerted a negative effect on TCP16 expression. Taken together, these results suggest a differential daily regulation of copper uptake depending on the external and internal copper pools, in which TCP16 inhibits copper remobilization at dawn through repression of intracellular transporters. es_ES
dc.description.sponsorship This work has been supported by grants BIO2017-87828-C2-1-P (LP) and the TRANSPLANTA Consortium (CSD2007-00057) from the Spanish Ministry of Economy and Competitiveness, and by FEDER funds from the European Union. NA-C and AC-S were recipients of a predoctoral FPI fellowship from the Spanish Ministry of Economy and Competitiveness. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Copper transport es_ES
dc.subject COPT3 es_ES
dc.subject Heavy metals es_ES
dc.subject TCP16 es_ES
dc.subject Transcriptional regulation es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2018.00910 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-87828-C2-1-P/ES/REGULACION TRANSCRIPCIONAL Y POSTRANSCRIPCIONAL DE PROCESOS METABOLICOS DEPENDIENTES DE LA DISPONIBILIDAD DE HIERRO Y COBRE EN LEVADURAS Y PLANTAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00057/ES/Función y potencial biotecnológico de los factores de transcripción de las plantas./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Andrés-Colás, N.; Carrió-Seguí, Á.; Abdel-Ghany, SE.; Pilon, M.; Peñarrubia, L. (2018). Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor. Frontiers in Plant Science. 9. https://doi.org/10.3389/fpls.2018.00910 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpls.2018.00910 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.identifier.eissn 1664-462X es_ES
dc.identifier.pmid 30018625 es_ES
dc.identifier.pmcid PMC6037871 es_ES
dc.relation.pasarela S\378283 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Abdel-Ghany, S. E., Müller-Moulé, P., Niyogi, K. K., Pilon, M., & Shikanai, T. (2005). Two P-Type ATPases Are Required for Copper Delivery in Arabidopsis thaliana Chloroplasts. The Plant Cell, 17(4), 1233-1251. doi:10.1105/tpc.104.030452 es_ES
dc.description.references Almeida, D. M., Gregorio, G. B., Oliveira, M. M., & Saibo, N. J. M. (2016). Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype. Plant Molecular Biology, 93(1-2), 61-77. doi:10.1007/s11103-016-0547-7 es_ES
dc.description.references à lvarez-Fernández, A., Díaz-Benito, P., Abadía, A., López-Millán, A.-F., & Abadía, J. (2014). Metal species involved in long distance metal transport in plants. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00105 es_ES
dc.description.references Andrés-Colás, N., Perea-García, A., Mayo de Andrés, S., Garcia-Molina, A., Dorcey, E., Rodríguez-Navarro, S., … Peñarrubia, L. (2013). Comparison of global responses to mild deficiency and excess copper levels in Arabidopsis seedlings. Metallomics, 5(9), 1234. doi:10.1039/c3mt00025g es_ES
dc.description.references Andrés-Colás, N., Perea-García, A., Puig, S., & Peñarrubia, L. (2010). Deregulated Copper Transport Affects Arabidopsis Development Especially in the Absence of Environmental Cycles. Plant Physiology, 153(1), 170-184. doi:10.1104/pp.110.153676 es_ES
dc.description.references Andrés-Colás, N., Sancenón, V., Rodríguez-Navarro, S., Mayo, S., Thiele, D. J., Ecker, J. R., … Peñarrubia, L. (2006). The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. The Plant Journal, 45(2), 225-236. doi:10.1111/j.1365-313x.2005.02601.x es_ES
dc.description.references Andriankaja, M. E., Danisman, S., Mignolet-Spruyt, L. F., Claeys, H., Kochanke, I., Vermeersch, M., … Inzé, D. (2014). Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors. Plant Molecular Biology, 85(3), 233-245. doi:10.1007/s11103-014-0180-2 es_ES
dc.description.references Atamian, H. S., & Harmer, S. L. (2016). Circadian regulation of hormone signaling and plant physiology. Plant Molecular Biology, 91(6), 691-702. doi:10.1007/s11103-016-0477-4 es_ES
dc.description.references Balsemão-Pires, E., Andrade, L. R., & Sachetto-Martins, G. (2013). Functional study of TCP23 in Arabidopsis thaliana during plant development. Plant Physiology and Biochemistry, 67, 120-125. doi:10.1016/j.plaphy.2013.03.009 es_ES
dc.description.references Bar-Peled, M., & Raikhel, N. V. (1997). Characterization of AtSEC12 and AtSAR1 (Proteins Likely Involved in Endoplasmic Reticulum and Golgi Transport). Plant Physiology, 114(1), 315-324. doi:10.1104/pp.114.1.315 es_ES
dc.description.references Bate, N., & Twell, D. (1998). Plant Molecular Biology, 37(5), 859-869. doi:10.1023/a:1006095023050 es_ES
dc.description.references Bemer, M., van Dijk, A. D. J., Immink, R. G. H., & Angenent, G. C. (2017). Cross-Family Transcription Factor Interactions: An Additional Layer of Gene Regulation. Trends in Plant Science, 22(1), 66-80. doi:10.1016/j.tplants.2016.10.007 es_ES
dc.description.references Bernal, M., Casero, D., Singh, V., Wilson, G. T., Grande, A., Yang, H., … Krämer, U. (2012). Transcriptome Sequencing Identifies SPL7-Regulated Copper Acquisition Genes FRO4/FRO5 and the Copper Dependence of Iron Homeostasis in Arabidopsis. The Plant Cell, 24(2), 738-761. doi:10.1105/tpc.111.090431 es_ES
dc.description.references Blaby-Haas, C. E., & Merchant, S. S. (2014). Lysosome-related Organelles as Mediators of Metal Homeostasis. Journal of Biological Chemistry, 289(41), 28129-28136. doi:10.1074/jbc.r114.592618 es_ES
dc.description.references Bock, K. W., Honys, D., Ward, J. M., Padmanaban, S., Nawrocki, E. P., Hirschi, K. D., … Sze, H. (2006). Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics. Plant Physiology, 140(4), 1151-1168. doi:10.1104/pp.105.074708 es_ES
dc.description.references Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3 es_ES
dc.description.references Brancaccio, D., Gallo, A., Piccioli, M., Novellino, E., Ciofi-Baffoni, S., & Banci, L. (2017). [4Fe-4S] Cluster Assembly in Mitochondria and Its Impairment by Copper. Journal of the American Chemical Society, 139(2), 719-730. doi:10.1021/jacs.6b09567 es_ES
dc.description.references Bruinsma, J. (1961). A comment on the spectrophotometric determination of chlorophyll. Biochimica et Biophysica Acta, 52(3), 576-578. doi:10.1016/0006-3002(61)90418-8 es_ES
dc.description.references Carrió-Seguí, A., Garcia-Molina, A., Sanz, A., & Peñarrubia, L. (2014). Defective Copper Transport in the copt5 Mutant Affects Cadmium Tolerance. Plant and Cell Physiology, 56(3), 442-454. doi:10.1093/pcp/pcu180 es_ES
dc.description.references Chen, Y.-Y., Wang, Y., Shin, L.-J., Wu, J.-F., Shanmugam, V., Tsednee, M., … Yeh, K.-C. (2013). Iron Is Involved in the Maintenance of Circadian Period Length in Arabidopsis. Plant Physiology, 161(3), 1409-1420. doi:10.1104/pp.112.212068 es_ES
dc.description.references Coego, A., Brizuela, E., Castillejo, P., Ruíz, S., Koncz, C., … del Pozo, J. C. (2014). The TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. The Plant Journal, 77(6), 944-953. doi:10.1111/tpj.12443 es_ES
dc.description.references Cubas, P., Lauter, N., Doebley, J., & Coen, E. (1999). The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal, 18(2), 215-222. doi:10.1046/j.1365-313x.1999.00444.x es_ES
dc.description.references Danisman, S. (2016). TCP Transcription Factors at the Interface between Environmental Challenges and the Plant’s Growth Responses. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01930 es_ES
dc.description.references Dhadi, S. R., Krom, N., & Ramakrishna, W. (2009). Genome-wide comparative analysis of putative bidirectional promoters from rice, Arabidopsis and Populus. Gene, 429(1-2), 65-73. doi:10.1016/j.gene.2008.09.034 es_ES
dc.description.references Dhaka, N., Bhardwaj, V., Sharma, M. K., & Sharma, R. (2017). Evolving Tale of TCPs: New Paradigms and Old Lacunae. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00479 es_ES
dc.description.references Franco-Zorrilla, J. M., López-Vidriero, I., Carrasco, J. L., Godoy, M., Vera, P., & Solano, R. (2014). DNA-binding specificities of plant transcription factors and their potential to define target genes. Proceedings of the National Academy of Sciences, 111(6), 2367-2372. doi:10.1073/pnas.1316278111 es_ES
dc.description.references Garcia-Molina, A., Andrés-Colás, N., Perea-García, A., del Valle-Tascón, S., Peñarrubia, L., & Puig, S. (2011). The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency. The Plant Journal, 65(6), 848-860. doi:10.1111/j.1365-313x.2010.04472.x es_ES
dc.description.references Garcia-Molina, A., Andrés-Colás, N., Perea-García, A., Neumann, U., Dodani, S. C., Huijser, P., … Puig, S. (2013). The Arabidopsis COPT6 Transport Protein Functions in Copper Distribution Under Copper-Deficient Conditions. Plant and Cell Physiology, 54(8), 1378-1390. doi:10.1093/pcp/pct088 es_ES
dc.description.references Garcia-Molina, A., Xing, S., & Huijser, P. (2014). Functional characterisation of Arabidopsis SPL7 conserved protein domains suggests novel regulatory mechanisms in the Cu deficiency response. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0231-5 es_ES
dc.description.references Giraud, E., Ng, S., Carrie, C., Duncan, O., Low, J., Lee, C. P., … Whelan, J. (2010). TCP Transcription Factors Link the Regulation of Genes Encoding Mitochondrial Proteins with the Circadian Clock in Arabidopsis thaliana. The Plant Cell, 22(12), 3921-3934. doi:10.1105/tpc.110.074518 es_ES
dc.description.references Guan, P., Ripoll, J.-J., Wang, R., Vuong, L., Bailey-Steinitz, L. J., Ye, D., & Crawford, N. M. (2017). Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proceedings of the National Academy of Sciences, 114(9), 2419-2424. doi:10.1073/pnas.1615676114 es_ES
dc.description.references Guan, P., Wang, R., Nacry, P., Breton, G., Kay, S. A., Pruneda-Paz, J. L., … Crawford, N. M. (2014). Nitrate foraging byArabidopsisroots is mediated by the transcription factor TCP20 through the systemic signaling pathway. Proceedings of the National Academy of Sciences, 111(42), 15267-15272. doi:10.1073/pnas.1411375111 es_ES
dc.description.references Harmer, S. L., Hogenesch, J. B., Straume, M., Chang, H.-S., Han, B., Zhu, T., … Kay, S. A. (2000). Orchestrated Transcription of Key Pathways in Arabidopsis by the Circadian Clock. Science, 290(5499), 2110-2113. doi:10.1126/science.290.5499.2110 es_ES
dc.description.references Hermans, C., Vuylsteke, M., Coppens, F., Craciun, A., Inzé, D., & Verbruggen, N. (2010). Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid-responsive genes. New Phytologist, 187(1), 119-131. doi:10.1111/j.1469-8137.2010.03258.x es_ES
dc.description.references Hirayama, T., Kieber, J. J., Hirayama, N., Kogan, M., Guzman, P., Nourizadeh, S., … Ecker, J. R. (1999). RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson Disease–Related Copper Transporter, Is Required for Ethylene Signaling in Arabidopsis. Cell, 97(3), 383-393. doi:10.1016/s0092-8674(00)80747-3 es_ES
dc.description.references Hong, S., Kim, S. A., Guerinot, M. L., & McClung, C. R. (2012). Reciprocal Interaction of the Circadian Clock with the Iron Homeostasis Network in Arabidopsis. Plant Physiology, 161(2), 893-903. doi:10.1104/pp.112.208603 es_ES
dc.description.references Hong-Hermesdorf, A., Miethke, M., Gallaher, S. D., Kropat, J., Dodani, S. C., Chan, J., … Merchant, S. S. (2014). Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas. Nature Chemical Biology, 10(12), 1034-1042. doi:10.1038/nchembio.1662 es_ES
dc.description.references Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. doi:10.1002/j.1460-2075.1987.tb02730.x es_ES
dc.description.references Kushnir, S. (1995). Molecular Characterization of a Putative Arabidopsis thaliana Copper Transporter and Its Yeast Homologue. Journal of Biological Chemistry, 270(47), 28479-28486. doi:10.1074/jbc.270.47.28479 es_ES
dc.description.references Kieffer, M., Master, V., Waites, R., & Davies, B. (2011). TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. The Plant Journal, 68(1), 147-158. doi:10.1111/j.1365-313x.2011.04674.x es_ES
dc.description.references Kim, H., Wu, X., & Lee, J. (2013). SLC31 (CTR) family of copper transporters in health and disease. Molecular Aspects of Medicine, 34(2-3), 561-570. doi:10.1016/j.mam.2012.07.011 es_ES
dc.description.references Klaumann, S., Nickolaus, S. D., Fürst, S. H., Starck, S., Schneider, S., Ekkehard Neuhaus, H., & Trentmann, O. (2011). The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. New Phytologist, 192(2), 393-404. doi:10.1111/j.1469-8137.2011.03798.x es_ES
dc.description.references Kosugi, S., & Ohashi, Y. (2002). DNA binding and dimerization specificity and potential targets for the TCP protein family. The Plant Journal, 30(3), 337-348. doi:10.1046/j.1365-313x.2002.01294.x es_ES
dc.description.references Krom, N., & Ramakrishna, W. (2008). Comparative Analysis of Divergent and Convergent Gene Pairs and Their Expression Patterns in Rice, Arabidopsis, and Populus. Plant Physiology, 147(4), 1763-1773. doi:10.1104/pp.108.122416 es_ES
dc.description.references Li, S. (2015). The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development. Plant Signaling & Behavior, 10(7), e1044192. doi:10.1080/15592324.2015.1044192 es_ES
dc.description.references Martín-Trillo, M., & Cubas, P. (2010). TCP genes: a family snapshot ten years later. Trends in Plant Science, 15(1), 31-39. doi:10.1016/j.tplants.2009.11.003 es_ES
dc.description.references Mitra, A., Han, J., Zhang, Z. J., & Mitra, A. (2009). The intergenic region of Arabidopsis thaliana cab1 and cab2 divergent genes functions as a bidirectional promoter. Planta, 229(5), 1015-1022. doi:10.1007/s00425-008-0859-1 es_ES
dc.description.references Mockler, T. C., Michael, T. P., Priest, H. D., Shen, R., Sullivan, C. M., Givan, S. A., … Chory, J. (2007). The Diurnal Project: Diurnal and Circadian Expression Profiling, Model-based Pattern Matching, and Promoter Analysis. Cold Spring Harbor Symposia on Quantitative Biology, 72(1), 353-363. doi:10.1101/sqb.2007.72.006 es_ES
dc.description.references Mukhopadhyay, P., & Tyagi, A. K. (2015). OsTCP19 influences developmental and abiotic stress signaling by modulatingABI4-mediated pathways. Scientific Reports, 5(1). doi:10.1038/srep09998 es_ES
dc.description.references Nicolas, M., & Cubas, P. (2016). TCP factors: new kids on the signaling block. Current Opinion in Plant Biology, 33, 33-41. doi:10.1016/j.pbi.2016.05.006 es_ES
dc.description.references Nohales, M. A., & Kay, S. A. (2016). Molecular mechanisms at the core of the plant circadian oscillator. Nature Structural & Molecular Biology, 23(12), 1061-1069. doi:10.1038/nsmb.3327 es_ES
dc.description.references Palatnik, J. F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J. C., & Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature, 425(6955), 257-263. doi:10.1038/nature01958 es_ES
dc.description.references Peñarrubia, L., Andrés-Colás, N., Moreno, J., & Puig, S. (2009). Regulation of copper transport in Arabidopsis thaliana: a biochemical oscillator? JBIC Journal of Biological Inorganic Chemistry, 15(1), 29-36. doi:10.1007/s00775-009-0591-8 es_ES
dc.description.references Peñarrubia, L., Romero, P., Carrió-Seguí, A., Andrés-Bordería, A., Moreno, J., & Sanz, A. (2015). Temporal aspects of copper homeostasis and its crosstalk with hormones. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00255 es_ES
dc.description.references Perea-García, A., Andrés-Bordería, A., Mayo de Andrés, S., Sanz, A., Davis, A. M., Davis, S. J., … Peñarrubia, L. (2015). Modulation of copper deficiency responses by diurnal and circadian rhythms inArabidopsis thaliana. Journal of Experimental Botany, 67(1), 391-403. doi:10.1093/jxb/erv474 es_ES
dc.description.references Perea-García, A., Garcia-Molina, A., Andrés-Colás, N., Vera-Sirera, F., Pérez-Amador, M. A., Puig, S., & Peñarrubia, L. (2013). Arabidopsis Copper Transport Protein COPT2 Participates in the Cross Talk between Iron Deficiency Responses and Low-Phosphate Signaling. Plant Physiology, 162(1), 180-194. doi:10.1104/pp.112.212407 es_ES
dc.description.references Perea-García, A., Sanz, A., Moreno, J., Andrés-Bordería, A., de Andrés, S. M., Davis, A. M., … Peñarrubia, L. (2016). Daily rhythmicity of high affinity copper transport. Plant Signaling & Behavior, 11(3), e1140291. doi:10.1080/15592324.2016.1140291 es_ES
dc.description.references Pilon-Smits, E. A. H. (2002). Characterization of a NifS-Like Chloroplast Protein from Arabidopsis. Implications for Its Role in Sulfur and Selenium Metabolism. PLANT PHYSIOLOGY, 130(3), 1309-1318. doi:10.1104/pp.102.010280 es_ES
dc.description.references Pruneda-Paz, J. L., Breton, G., Para, A., & Kay, S. A. (2009). A Functional Genomics Approach Reveals CHE as a Component of the Arabidopsis Circadian Clock. Science, 323(5920), 1481-1485. doi:10.1126/science.1167206 es_ES
dc.description.references Puig, S. (2014). Function and Regulation of the Plant COPT Family of High-Affinity Copper Transport Proteins. Advances in Botany, 2014, 1-9. doi:10.1155/2014/476917 es_ES
dc.description.references Rae, T. D. (1999). Undetectable Intracellular Free Copper: The Requirement of a Copper Chaperone for Superoxide Dismutase. Science, 284(5415), 805-808. doi:10.1126/science.284.5415.805 es_ES
dc.description.references Ravet, K., & Pilon, M. (2013). Copper and Iron Homeostasis in Plants: The Challenges of Oxidative Stress. Antioxidants & Redox Signaling, 19(9), 919-932. doi:10.1089/ars.2012.5084 es_ES
dc.description.references Rawat, R., Xu, Z.-F., Yao, K.-M., & Chye, M.-L. (2005). Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase. Plant Molecular Biology, 57(5), 629-643. doi:10.1007/s11103-005-0954-7 es_ES
dc.description.references RODRIGO-MORENO, A., ANDRÉS-COLÁS, N., POSCHENRIEDER, C., GUNSÉ, B., PEÑARRUBIA, L., & SHABALA, S. (2012). Calcium- and potassium-permeable plasma membrane transporters are activated by copper inArabidopsisroot tips: linking copper transport with cytosolic hydroxyl radical production. Plant, Cell & Environment, 36(4), 844-855. doi:10.1111/pce.12020 es_ES
dc.description.references Rogers, H. J., Bate, N., Combe, J., Sullivan, J., Sweetman, J., Swan, C., … Twell, D. (2001). Plant Molecular Biology, 45(5), 577-585. doi:10.1023/a:1010695226241 es_ES
dc.description.references Rubio-Somoza, I., Zhou, C.-M., Confraria, A., Martinho, C., von Born, P., Baena-Gonzalez, E., … Weigel, D. (2014). Temporal Control of Leaf Complexity by miRNA-Regulated Licensing of Protein Complexes. Current Biology, 24(22), 2714-2719. doi:10.1016/j.cub.2014.09.058 es_ES
dc.description.references Salomé, P. A., Oliva, M., Weigel, D., & Krämer, U. (2012). Circadian clock adjustment to plant iron status depends on chloroplast and phytochrome function. The EMBO Journal, 32(4), 511-523. doi:10.1038/emboj.2012.330 es_ES
dc.description.references Sancenón, V., Puig, S., Mateu-Andrés, I., Dorcey, E., Thiele, D. J., & Peñarrubia, L. (2004). TheArabidopsisCopper Transporter COPT1 Functions in Root Elongation and Pollen Development. Journal of Biological Chemistry, 279(15), 15348-15355. doi:10.1074/jbc.m313321200 es_ES
dc.description.references Sancenón, V., Puig, S., Mira, H., Thiele, D. J., & Peñarrubia, L. (2003). Plant Molecular Biology, 51(4), 577-587. doi:10.1023/a:1022345507112 es_ES
dc.description.references Seila, A. C., Calabrese, J. M., Levine, S. S., Yeo, G. W., Rahl, P. B., Flynn, R. A., … Sharp, P. A. (2008). Divergent Transcription from Active Promoters. Science, 322(5909), 1849-1851. doi:10.1126/science.1162253 es_ES
dc.description.references Takeda, T., Amano, K., Ohto, M., Nakamura, K., Sato, S., Kato, T., … Ueguchi, C. (2006). RNA Interference of the Arabidopsis Putative Transcription Factor TCP16 Gene Results in Abortion of Early Pollen Development. Plant Molecular Biology, 61(1-2), 165-177. doi:10.1007/s11103-006-6265-9 es_ES
dc.description.references Terzaghi, W. B., & Cashmore, A. R. (1995). Photomorphenesis: Seeing the light in plant development. Current Biology, 5(5), 466-468. doi:10.1016/s0960-9822(95)00092-3 es_ES
dc.description.references Uberti-Manassero, N. G., Coscueta, E. R., & Gonzalez, D. H. (2016). Expression of a repressor form of the Arabidopsis thaliana transcription factor TCP16 induces the formation of ectopic meristems. Plant Physiology and Biochemistry, 108, 57-62. doi:10.1016/j.plaphy.2016.06.031 es_ES
dc.description.references Viola, I. L., Camoirano, A., & Gonzalez, D. H. (2015). Redox-Dependent Modulation of Anthocyanin Biosynthesis by the TCP Transcription Factor TCP15 during Exposure to High Light Intensity Conditions in Arabidopsis. Plant Physiology, 170(1), 74-85. doi:10.1104/pp.15.01016 es_ES
dc.description.references Viola, I. L., Guttlein, L. N., & Gonzalez, D. H. (2013). Redox Modulation of Plant Developmental Regulators from the Class I TCP Transcription Factor Family. PLANT PHYSIOLOGY, 162(3), 1434-1447. doi:10.1104/pp.113.216416 es_ES
dc.description.references Viola, I. L., Reinheimer, R., Ripoll, R., Manassero, N. G. U., & Gonzalez, D. H. (2011). Determinants of the DNA Binding Specificity of Class I and Class II TCP Transcription Factors. Journal of Biological Chemistry, 287(1), 347-356. doi:10.1074/jbc.m111.256271 es_ES
dc.description.references Wakano, C., Byun, J. S., Di, L.-J., & Gardner, K. (2012). The dual lives of bidirectional promoters. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1819(7), 688-693. doi:10.1016/j.bbagrm.2012.02.006 es_ES
dc.description.references Wang, H., Mao, Y., Yang, J., & He, Y. (2015). TCP24 modulates secondary cell wall thickening and anther endothecium development. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00436 es_ES
dc.description.references Wang, H.-Y., Klatte, M., Jakoby, M., Bäumlein, H., Weisshaar, B., & Bauer, P. (2007). Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta, 226(4), 897-908. doi:10.1007/s00425-007-0535-x es_ES
dc.description.references Wang, S., Sun, X., Hoshino, Y., Yu, Y., Jia, B., Sun, Z., … Zhu, Y. (2014). MicroRNA319 Positively Regulates Cold Tolerance by Targeting OsPCF6 and OsTCP21 in Rice (Oryza sativa L.). PLoS ONE, 9(3), e91357. doi:10.1371/journal.pone.0091357 es_ES
dc.description.references Weiss, D., & Ori, N. (2007). Mechanisms of Cross Talk between Gibberellin and Other Hormones. Plant Physiology, 144(3), 1240-1246. doi:10.1104/pp.107.100370 es_ES
dc.description.references Welchen, E., & Gonzalez, D. H. (2006). Overrepresentation of Elements Recognized by TCP-Domain Transcription Factors in the Upstream Regions of Nuclear Genes Encoding Components of the Mitochondrial Oxidative Phosphorylation Machinery. Plant Physiology, 141(2), 540-545. doi:10.1104/pp.105.075366 es_ES
dc.description.references Wu, J.-F., Tsai, H.-L., Joanito, I., Wu, Y.-C., Chang, C.-W., Li, Y.-H., … Wu, S.-H. (2016). LWD–TCP complex activates the morning gene CCA1 in Arabidopsis. Nature Communications, 7(1). doi:10.1038/ncomms13181 es_ES
dc.description.references Yamasaki, H., Hayashi, M., Fukazawa, M., Kobayashi, Y., & Shikanai, T. (2009). SQUAMOSA Promoter Binding Protein–Like7 Is a Central Regulator for Copper Homeostasis in Arabidopsis. The Plant Cell, 21(1), 347-361. doi:10.1105/tpc.108.060137 es_ES
dc.description.references Yan, J., Chia, J.-C., Sheng, H., Jung, H., Zavodna, T.-O., Zhang, L., … Vatamaniuk, O. K. (2017). Arabidopsis Pollen Fertility Requires the Transcription Factors CITF1 and SPL7 That Regulate Copper Delivery to Anthers and Jasmonic Acid Synthesis. The Plant Cell, 29(12), 3012-3029. doi:10.1105/tpc.17.00363 es_ES
dc.description.references Zhang, H., Zhao, X., Li, J., Cai, H., Deng, X. W., & Li, L. (2014). MicroRNA408 Is Critical for the HY5-SPL7 Gene Network That Mediates the Coordinated Response to Light and Copper. The Plant Cell, 26(12), 4933-4953. doi:10.1105/tpc.114.127340 es_ES
dc.description.references Zuo, J., Niu, Q.-W., & Chua, N.-H. (2000). An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. The Plant Journal, 24(2), 265-273. doi:10.1046/j.1365-313x.2000.00868.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem