- -

Acoustic cloak based on Bézier scatterers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Acoustic cloak based on Bézier scatterers

Mostrar el registro completo del ítem

Lu, Z.; Sanchis Martínez, L.; Wen, J.; Cai, L.; Bi, Y.; Sánchez-Dehesa Moreno-Cid, J. (2018). Acoustic cloak based on Bézier scatterers. Scientific Reports. 8. https://doi.org/10.1038/s41598-018-30888-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147515

Ficheros en el ítem

Metadatos del ítem

Título: Acoustic cloak based on Bézier scatterers
Autor: Lu, Zhimiao Sanchis Martínez, Lorenzo Wen, Jihong Cai, Li Bi, Yafeng Sánchez-Dehesa Moreno-Cid, José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] Among the different approaches proposed to design acoustic cloaks, the one consisting on the use of an optimum distribution of discrete scatters surrounding the concealing object has been successfully tested. The ...[+]
Palabras clave: Acoustic cloaks , Beziers scatterers
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-018-30888-7
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/DOI:10.1038/s41598-018-30888-7
Código del Proyecto:
info:eu-repo/grantAgreement/CSC//201503170282/
info:eu-repo/grantAgreement/NSFC//51275519/
info:eu-repo/grantAgreement/NSFC//11372346/
info:eu-repo/grantAgreement/MINECO//TEC2014-53088-C3-1-R/ES/DISPOSITIVOS PASIVOS BASADOS EN MATERIALES FUNCIONALES AVANZADOS CON RESONADORES DE ALTAS PRESTACIONES/
Agradecimientos:
J. Sanchez-Dehesa acknowledges the financial support by the Spanish Ministerio de Economia y Competitividad and the European Union Fondo Europeo para el Desarrollo Regional (FEDER) under Grant with Ref. TEC2014-53088-C3-1-R. ...[+]
Tipo: Artículo

References

Cummer, S. A. & Schurig, D. One path to acoustic cloaking. New J. Phys. 9(3), 45 (2007).

Cai, L.-W. & Sánchez-Dehesa Analysis of Cummer–Schurig acoustic cloaking. J. New J. Phys. 9(12), 450 (2007).

Chen, H. & Chan, C. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91(18), 183518 (2007). [+]
Cummer, S. A. & Schurig, D. One path to acoustic cloaking. New J. Phys. 9(3), 45 (2007).

Cai, L.-W. & Sánchez-Dehesa Analysis of Cummer–Schurig acoustic cloaking. J. New J. Phys. 9(12), 450 (2007).

Chen, H. & Chan, C. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91(18), 183518 (2007).

Norris, A. N. Acoustic cloaking theory. Proc. R. Soc. A 464(2097), 2411–2434 (2008).

Torrent, D. & Sánchez-Dehesa, J. Acoustic cloaking in two dimensions: a feasible approach. New J. Phys. 10(6), 063015 (2008).

Zhang, S., Xia, C. & Fang, N. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 Jan (2011).

Popa, B.-I., Zigoneanu, L. & Cummer, S. A. Experimental acoustic ground cloak in air. Phys. Rev. Lett. 106, 253901 Jun (2011).

Zigoneanu, L., Popa, B.-I. & Cummer, S. A. Design and measurements of a broadband two-dimensional acoustic lens. Nat. Mat 13, 352 (2014).

Kan, W. et al. Broadband acoustic cloaking within an arbitrary hard cavity. Phys. Rev. Applied 3, 064019 Jun (2015).

Scandrett, C. L., Boisvert, J. E. & Howarth, T. R. Acoustic cloaking using layered pentamode materials. J. Acoust. Soc. Am. 127(5), 2856–2864 (2010).

Chen, Y. et al. Broadband solid cloak for underwater acoustics. Phys. Rev. B 95, 180104 May (2017).

Alù, A. & Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72(1), 016623 (2005).

Guild, M. D., Alu, A. & Haberman, M. R. Cancellation of acoustic scattering from an elastic sphere. J. Acoust. Soc. Am. 129(3), 1355–1365 (2011).

García-Chocano, V. M. et al. Acoustic cloak for airborne sound by inverse design. Appl. Phys. Lett. 99(7), 074102 (2011).

Sanchis, L. et al. Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere. Phys. Rev. Lett. 110, 124301 Mar (2013).

Andkjær, J. & Sigmund, O. Topology optimized for Airborne sound. ASME J. Vib. Acoust. 135(2), 041011 (2013).

Guild, M. D. Acoustic Cloaking of Spherical Objects Unsing Thin Elastic Coatings. Univ. of Texas at Austin (2012).

Guild, M. D., Haberman, M. R. & Alú, A. Plasmonic-type Acoustic cloak made of a bilaminate shell. Phys. Rev. B 86(10), 104302 (2012).

Rohde, C. A. et al. Experimental demonstration of underwater acoustic scattering cancellation. Sci. Rep. 5, 13175 (2015).

Popa, B.-I. & Cummer, S. A. Cloaking with optimized homogeneous anisotropic layers. Phys. Rev. A 79, 023806 Feb (2009).

Urzhumov, Y., Landy, N., Driscoll, T., Basov, D. & Smith, D. R. Thin low-loss dielectric coatings for freespace cloaking. Opt. Lett. 38(10), 1606–1608 (2013).

Andkjaer, J. & Sigmund, O. Topology optimized low-contrast all-dielectric optical cloak. Appl. Phys. Lett. 98(2), 021112 (2011).

Climente, A., Torrent, D. & Sánchez-Dehesa, J. Sound focusing by gradient index sonic lenses. Applied Physics Letters 97(10), 104103 (2010).

Håkansson, A., Sánchez-Dehesa, J. & Sanchis, L. Acoustic lens design by genetic algorithms Phys. Rev. B 70, 214302 Dec (2004).

Håkansson, A., Cervera, F. & Sánchez-Dehesa, J. Sound focusing by flat acoustic lenses without negative refraction. Applied Physics Letters 86(5), 054102 (2005).

Li, D., Zigoneanu, L., Popa, B.-I. & Cummer, S. A. Design of an acoustic metamaterial lens using genetic algorithms. The Journal of the Acoustical Society of America 132(4), 2823–2833 (2012).

Prautzsch, H., Wolfgang Boehm, W. & Paluszny, M. Bézier and B-Spline Techniques. Springer Science & Business Media (2002).

Andersen, P. R., Cutanda-Henríquez, V., Aage, N. & Sánchez-Dehesa, J. Viscothermal effects on an acoustic cloak based on scattering cancellation. Proceedings of the 6th International Conference on Noise and Vibration Emerging methods (NOVEM 2018 ), 171971, June (2018).

Golberg, D. Genetic Algorithms in Search, Optimization and Learning. Addison Wesley, Reading, MA (1989).

Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220(4598), 671–680 (1983).

Sanchis, L., Cryan, M. J., Pozo, J., Craddock, I. J. & Rarity, J. G. Ultrahigh Purcell factor in photonic crystal slab microcavities Phys. Rev. B 76, 045118 Jul (2007).

Karageorghis, A. & Fairweather, G. J. The method of fundamental solutions for axisymmetric acoustic scattering and radiation problems. J. Acoust. Soc. Am. 104(6), 3212–3218 (1998).

Fairweather, G., Karageorghis, A. & Martin, P. The method of fundamental solutions for scattering and radiation problems. Engineering Analysis with Boundary Elements 27(7), 759–769 (2003).

Seybert, A. F., Soenarko, B., Rizzo, F. J. & Shippy, D. J. A special integral equation formulation for acoustic radiation and scattering for axisymmetric bodies and boundary conditions. J. Acoust. Soc. Am. 80(4), 1241–1247 (1986).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem