- -

A near Pareto optimal approach to student supervisor allocation with two sided preferences and workload balance

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A near Pareto optimal approach to student supervisor allocation with two sided preferences and workload balance

Show full item record

Sanchez-Anguix, V.; Chalumuri, R.; Aydogan, R.; Julian Inglada, VJ. (2019). A near Pareto optimal approach to student supervisor allocation with two sided preferences and workload balance. Applied Soft Computing. 76:1-15. https://doi.org/10.1016/j.asoc.2018.11.049

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147518

Files in this item

Item Metadata

Title: A near Pareto optimal approach to student supervisor allocation with two sided preferences and workload balance
Author: Sanchez-Anguix, Víctor Chalumuri, Rithin Aydogan, Reyhan Julian Inglada, Vicente Javier
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Issued date:
Abstract:
[EN] The problem of allocating students to supervisors for the development of a personal project or a dissertation is a crucial activity in the higher education environment, as it enables students to get feedback on their ...[+]
Subjects: Genetic algorithms , Student-project allocation , Matching , Pareto optimal , Artificial intelligence
Copyrigths: Reserva de todos los derechos
Source:
Applied Soft Computing. (issn: 1568-4946 )
DOI: 10.1016/j.asoc.2018.11.049
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.asoc.2018.11.049
Project ID:
info:eu-repo/grantAgreement/EC/H2020/688095/EU/Large-scale pilots for collaborative OpenCourseWare authoring, multiplatform delivery and Learning Analytics/
Thanks:
This work is partially supported by funds of the Faculty of Engineering and Computing at Coventry University, United Kingdom, and funds from EU ICT-20-2015 Project SlideWiki granted by the European Commission.
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record