Mostrar el registro sencillo del ítem
dc.contributor.author | Sanchez-Anguix, Víctor | es_ES |
dc.contributor.author | Chalumuri, Rithin | es_ES |
dc.contributor.author | Aydogan, Reyhan | es_ES |
dc.contributor.author | Julian Inglada, Vicente Javier | es_ES |
dc.date.accessioned | 2020-07-07T03:32:29Z | |
dc.date.available | 2020-07-07T03:32:29Z | |
dc.date.issued | 2019-03 | es_ES |
dc.identifier.issn | 1568-4946 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/147518 | |
dc.description.abstract | [EN] The problem of allocating students to supervisors for the development of a personal project or a dissertation is a crucial activity in the higher education environment, as it enables students to get feedback on their work from an expert and improve their personal, academic, and professional abilities. In this article, we propose a multi-objective and near Pareto optimal genetic algorithm for the allocation of students to supervisors. The allocation takes into consideration the students and supervisors¿ preferences on research/project topics, the lower and upper supervision quotas of supervisors, as well as the workload balance amongst supervisors. We introduce novel mutation and crossover operators for the student¿supervisor allocation problem. The experiments carried out show that the components of the genetic algorithm are more apt for the problem than classic components, and that the genetic algorithm is capable of producing allocations that are near Pareto optimal in a reasonable time. | es_ES |
dc.description.sponsorship | This work is partially supported by funds of the Faculty of Engineering and Computing at Coventry University, United Kingdom, and funds from EU ICT-20-2015 Project SlideWiki granted by the European Commission. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Soft Computing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Genetic algorithms | es_ES |
dc.subject | Student-project allocation | es_ES |
dc.subject | Matching | es_ES |
dc.subject | Pareto optimal | es_ES |
dc.subject | Artificial intelligence | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | A near Pareto optimal approach to student supervisor allocation with two sided preferences and workload balance | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.asoc.2018.11.049 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/688095/EU/Large-scale pilots for collaborative OpenCourseWare authoring, multiplatform delivery and Learning Analytics/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Sanchez-Anguix, V.; Chalumuri, R.; Aydogan, R.; Julian Inglada, VJ. (2019). A near Pareto optimal approach to student supervisor allocation with two sided preferences and workload balance. Applied Soft Computing. 76:1-15. https://doi.org/10.1016/j.asoc.2018.11.049 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.asoc.2018.11.049 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 76 | es_ES |
dc.relation.pasarela | S\374203 | es_ES |
dc.contributor.funder | Coventry University | es_ES |
dc.contributor.funder | European Commission | es_ES |