- -

Long-Circulating Hyaluronan-Based Nanohydrogels as Carriers of Hydrophobic Drugs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Long-Circulating Hyaluronan-Based Nanohydrogels as Carriers of Hydrophobic Drugs

Mostrar el registro completo del ítem

Di Meo, C.; Martínez Martínez, M.; Coviello, T.; Bermejo, M.; Merino Sanjuán, V.; Gonzalez-Alvarez, I.; Gonzalez-Alvarez, M.... (2018). Long-Circulating Hyaluronan-Based Nanohydrogels as Carriers of Hydrophobic Drugs. Pharmaceutics. 10(4):1-15. https://doi.org/10.3390/pharmaceutics10040213

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147523

Ficheros en el ítem

Metadatos del ítem

Título: Long-Circulating Hyaluronan-Based Nanohydrogels as Carriers of Hydrophobic Drugs
Autor: Di Meo, Chiara Martínez Martínez, Mayte Coviello, Tommasina Bermejo, M. Merino Sanjuán, Virginia Gonzalez-Alvarez, Isabel Gonzalez-Alvarez, Marta Matricardi, P.
Fecha difusión:
Resumen:
[EN] Nanohydrogels based on natural polymers, such as polysaccharides, are gaining interest as vehicles for therapeutic agents, as they can modify the pharmacokinetics and pharmacodynamics of the carried drugs. In this ...[+]
Palabras clave: Nanohydrogels , Hyaluronan , Riboflavin , Hydrophobic drugs , Piroxicam , Biodistribution , Pharmacokinetic
Derechos de uso: Reconocimiento (by)
Fuente:
Pharmaceutics. (eissn: 1999-4923 )
DOI: 10.3390/pharmaceutics10040213
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/pharmaceutics10040213
Código del Proyecto:
info:eu-repo/grantAgreement/MECD//FPU13%2F01105/ES/FPU13%2F01105/
info:eu-repo/grantAgreement/MINECO//SAF2016-78756-P/ES/MODELOS IN VITRO DE EVALUACION BIOFARMACEUTICA: BARRERAS BIOLOGICAS Y DISOLUCION BIOPREDICTIVA/
info:eu-repo/grantAgreement/Sapienza Università di Roma//RP116154C2EF9AC8/
info:eu-repo/grantAgreement/Sapienza Università di Roma//RM11715C1743EE89/
Agradecimientos:
Financial support from University Sapienza Progetti di Ricerca: grant RP116154C2EF9AC8 and grant RM11715C1743EE89 are acknowledged. Isabel Gonzalez-Alvarez, Marta Gonzalez-Alvarez and Marival Bermejo acknowledge partial ...[+]
Tipo: Artículo

References

Allison, D. D., & Grande-Allen, K. J. (2006). Review. Hyaluronan: A Powerful Tissue Engineering Tool. Tissue Engineering, 12(8), 2131-2140. doi:10.1089/ten.2006.12.2131

Prestwich, G. D. (2008). Engineering a clinically-useful matrix for cell therapy. Organogenesis, 4(1), 42-47. doi:10.4161/org.6152

Ossipov, D. A. (2010). Nanostructured hyaluronic acid-based materials for active delivery to cancer. Expert Opinion on Drug Delivery, 7(6), 681-703. doi:10.1517/17425241003730399 [+]
Allison, D. D., & Grande-Allen, K. J. (2006). Review. Hyaluronan: A Powerful Tissue Engineering Tool. Tissue Engineering, 12(8), 2131-2140. doi:10.1089/ten.2006.12.2131

Prestwich, G. D. (2008). Engineering a clinically-useful matrix for cell therapy. Organogenesis, 4(1), 42-47. doi:10.4161/org.6152

Ossipov, D. A. (2010). Nanostructured hyaluronic acid-based materials for active delivery to cancer. Expert Opinion on Drug Delivery, 7(6), 681-703. doi:10.1517/17425241003730399

Rao, N. V., Yoon, H. Y., Han, H. S., Ko, H., Son, S., Lee, M., … Park, J. H. (2015). Recent developments in hyaluronic acid-based nanomedicine for targeted cancer treatment. Expert Opinion on Drug Delivery, 13(2), 239-252. doi:10.1517/17425247.2016.1112374

Dosio, F., Arpicco, S., Stella, B., & Fattal, E. (2016). Hyaluronic acid for anticancer drug and nucleic acid delivery. Advanced Drug Delivery Reviews, 97, 204-236. doi:10.1016/j.addr.2015.11.011

Montanari, E., D’Arrigo, G., Di Meo, C., Virga, A., Coviello, T., Passariello, C., & Matricardi, P. (2014). Chasing bacteria within the cells using levofloxacin-loaded hyaluronic acid nanohydrogels. European Journal of Pharmaceutics and Biopharmaceutics, 87(3), 518-523. doi:10.1016/j.ejpb.2014.03.003

Svanovsky, E., Velebny, V., Laznickova, A., & Laznicek, M. (2008). The effect of molecular weight on the biodistribution of hyaluronic acid radiolabeled with111In after intravenous administration to rats. European Journal of Drug Metabolism and Pharmacokinetics, 33(3), 149-157. doi:10.1007/bf03191112

Harris, E. N., Kyosseva, S. V., Weigel, J. A., & Weigel, P. H. (2006). Expression, Processing, and Glycosaminoglycan Binding Activity of the Recombinant Human 315-kDa Hyaluronic Acid Receptor for Endocytosis (HARE). Journal of Biological Chemistry, 282(5), 2785-2797. doi:10.1074/jbc.m607787200

Choi, K. Y., Min, K. H., Na, J. H., Choi, K., Kim, K., Park, J. H., … Jeong, S. Y. (2009). Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: synthesis, characterization, and in vivo biodistribution. Journal of Materials Chemistry, 19(24), 4102. doi:10.1039/b900456d

Pedrosa, S. S., Pereira, P., Correia, A., & Gama, F. M. (2017). Targetability of hyaluronic acid nanogel to cancer cells : In vitro and in vivo studies. European Journal of Pharmaceutical Sciences, 104, 102-113. doi:10.1016/j.ejps.2017.03.045

Yang, C., Li, C., Zhang, P., Wu, W., & Jiang, X. (2017). Redox Responsive Hyaluronic Acid Nanogels for Treating RHAMM (CD168) Over-expressive Cancer, both Primary and Metastatic Tumors. Theranostics, 7(6), 1719-1734. doi:10.7150/thno.18340

Rosso, F., Quagliariello, V., Tortora, C., Di Lazzaro, A., Barbarisi, A., & Iaffaioli, R. V. (2013). Cross-linked hyaluronic acid sub-micron particles: in vitro and in vivo biodistribution study in cancer xenograft model. Journal of Materials Science: Materials in Medicine, 24(6), 1473-1481. doi:10.1007/s10856-013-4895-4

Nakai, T., Hirakura, T., Sakurai, Y., Shimoboji, T., Ishigai, M., & Akiyoshi, K. (2012). Injectable Hydrogel for Sustained Protein Release by Salt-Induced Association of Hyaluronic Acid Nanogel. Macromolecular Bioscience, 12(4), 475-483. doi:10.1002/mabi.201100352

Montanari, E., Capece, S., Di Meo, C., Meringolo, M., Coviello, T., Agostinelli, E., & Matricardi, P. (2013). Hyaluronic Acid Nanohydrogels as a Useful Tool for BSAO Immobilization in the Treatment of Melanoma Cancer Cells. Macromolecular Bioscience, 13(9), 1185-1194. doi:10.1002/mabi.201300114

Montanari, E., Di Meo, C., Sennato, S., Francioso, A., Marinelli, A. L., Ranzo, F., … Matricardi, P. (2017). Hyaluronan-cholesterol nanohydrogels: Characterisation and effectiveness in carrying alginate lyase. New Biotechnology, 37, 80-89. doi:10.1016/j.nbt.2016.08.004

Montanari, E., De Rugeriis, M. C., Di Meo, C., Censi, R., Coviello, T., Alhaique, F., & Matricardi, P. (2015). One-step formation and sterilization of gellan and hyaluronan nanohydrogels using autoclave. Journal of Materials Science: Materials in Medicine, 26(1). doi:10.1007/s10856-014-5362-6

Di Meo, C., Montanari, E., Manzi, L., Villani, C., Coviello, T., & Matricardi, P. (2015). Highly versatile nanohydrogel platform based on riboflavin-polysaccharide derivatives useful in the development of intrinsically fluorescent and cytocompatible drug carriers. Carbohydrate Polymers, 115, 502-509. doi:10.1016/j.carbpol.2014.08.107

Manzi, G., Zoratto, N., Matano, S., Sabia, R., Villani, C., Coviello, T., … Di Meo, C. (2017). «Click» hyaluronan based nanohydrogels as multifunctionalizable carriers for hydrophobic drugs. Carbohydrate Polymers, 174, 706-715. doi:10.1016/j.carbpol.2017.07.003

Lozoya-Agullo, I., Araújo, F., González-Álvarez, I., Merino-Sanjuán, M., González-Álvarez, M., Bermejo, M., & Sarmento, B. (2018). PLGA nanoparticles are effective to control the colonic release and absorption on ibuprofen. European Journal of Pharmaceutical Sciences, 115, 119-125. doi:10.1016/j.ejps.2017.12.009

Samiei, N., Mangas-Sanjuan, V., González-Álvarez, I., Foroutan, M., Shafaati, A., Zarghi, A., & Bermejo, M. (2013). Ion-pair strategy for enabling amifostine oral absorption: Rat in situ and in vivo experiments. European Journal of Pharmaceutical Sciences, 49(4), 499-504. doi:10.1016/j.ejps.2013.04.025

Wei, X., Senanayake, T. H., Bohling, A., & Vinogradov, S. V. (2014). Targeted Nanogel Conjugate for Improved Stability and Cellular Permeability of Curcumin: Synthesis, Pharmacokinetics, and Tumor Growth Inhibition. Molecular Pharmaceutics, 11(9), 3112-3122. doi:10.1021/mp500290f

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem